Journal of Luminescence最新文献

筛选
英文 中文
Halide modulated room-temperature phosphorescence from one-dimensional metal‒organic halides for time-resolved anti-counterfeiting 一维金属有机卤化物的卤化物调制室温磷光用于时间分辨防伪
IF 3.3 3区 物理与天体物理
Journal of Luminescence Pub Date : 2024-09-24 DOI: 10.1016/j.jlumin.2024.120907
Zhong Xu, Yi Shen, Yang Chen, Mengkai Zuo, Feng Hu, Mingchen Deng, Bin Wang, Hao Sun, Wei Huang, Dayu Wu
{"title":"Halide modulated room-temperature phosphorescence from one-dimensional metal‒organic halides for time-resolved anti-counterfeiting","authors":"Zhong Xu,&nbsp;Yi Shen,&nbsp;Yang Chen,&nbsp;Mengkai Zuo,&nbsp;Feng Hu,&nbsp;Mingchen Deng,&nbsp;Bin Wang,&nbsp;Hao Sun,&nbsp;Wei Huang,&nbsp;Dayu Wu","doi":"10.1016/j.jlumin.2024.120907","DOIUrl":"10.1016/j.jlumin.2024.120907","url":null,"abstract":"<div><div>Room-temperature phosphorescence (RTP) materials have shown widespread applications in optoelectronic devices, biological imaging, molecular switches, safety systems, etc. Here, we report the design and synthesis of a series of metal‒organic halide materials with regulated phosphorescence and fluorescence dual emission properties. Their dual emission ratio and RTP lifetime can be facilely tuned by the halide substituent synthesis. Bright afterglow with various emission duration for the investigated materials can be identified by the naked eyes. DFT calculations reveal that the excited states exhibit halide‒ligand charge transfer (XLCT) character and the halide atoms play crucial role in their luminescence properties. Based on their regulatable dual emission and afterglow properties, a time-resolved anti-counterfeiting application is developed and avoids the over-dependence on equipment, which further provides feasible design strategy of advanced portable anti-counterfeiting technology.</div></div>","PeriodicalId":16159,"journal":{"name":"Journal of Luminescence","volume":"277 ","pages":"Article 120907"},"PeriodicalIF":3.3,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142314575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Luminescent perovskite quantum dots: Progress in fabrication, modelling and machine learning approaches for advanced photonic and quantum computing applications 发光过氧化物量子点:先进光子和量子计算应用的制造、建模和机器学习方法的进展
IF 3.3 3区 物理与天体物理
Journal of Luminescence Pub Date : 2024-09-23 DOI: 10.1016/j.jlumin.2024.120906
Deepthi Jayan K., Kesiya Babu
{"title":"Luminescent perovskite quantum dots: Progress in fabrication, modelling and machine learning approaches for advanced photonic and quantum computing applications","authors":"Deepthi Jayan K.,&nbsp;Kesiya Babu","doi":"10.1016/j.jlumin.2024.120906","DOIUrl":"10.1016/j.jlumin.2024.120906","url":null,"abstract":"<div><div>Luminescent metal halide quantum dots (QDs), particularly perovskite quantum dots (PQDs), garnered remarkable attention for unique optical properties as well as critical use for advanced photonic and electronic devices. This comprehensive review explores the synthesis, properties, and applications of PQDs, with a focus on their role in luminescent metal halide QD devices. The review begins by discussing advanced synthesis techniques and surface engineering strategies for PQDs, highlighting recent developments in the field. Structural and optical characterization techniques are then examined, emphasizing the importance of understanding quantum confinement effects and emission mechanisms in PQDs. The review also includes a discussion on modelling and simulation, discussing computational methods for predicting and optimizing PQD properties. Experimental studies and device fabrication techniques are discussed in detail, showcasing the progress made in integrating PQDs into optoelectronic devices. Advanced applications of PQDs in light-emitting devices, solar cells, sensors, and photodetectors are explored, highlighting their potential for efficiency enhancements and novel functionalities. A detailed discussion on the emerging role of machine learning (ML) in PQD research, focusing on its applications in materials discovery and device optimization are also included. This review explores the potential of luminescent PQDs for quantum computing applications, focusing on their role as qubits, quantum gates, and quantum memory devices, emphasizing the latest advancements, challenges, and future prospects of integrating PQDs into quantum computing architectures. The review concludes with an overview of emerging trends and future directions in the field, emphasizing the need for continued research to unlock the full potential of PQDs in advanced photonic and electronic devices.</div></div>","PeriodicalId":16159,"journal":{"name":"Journal of Luminescence","volume":"277 ","pages":"Article 120906"},"PeriodicalIF":3.3,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142314453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual-color emitting in rare-earth based double perovskites Cs2NaLuCl6: Sb3+, Tb3+ for warm WLED and anti-counterfeiting 稀土基双过氧化物 Cs2NaLuCl6 中的双色发光:Sb3+、Tb3+ 用于暖色 WLED 和防伪
IF 3.3 3区 物理与天体物理
Journal of Luminescence Pub Date : 2024-09-23 DOI: 10.1016/j.jlumin.2024.120909
Yiying Zhu, Yining Wang, Yixin Sun, Zheng Xu, Mengmeng Shang
{"title":"Dual-color emitting in rare-earth based double perovskites Cs2NaLuCl6: Sb3+, Tb3+ for warm WLED and anti-counterfeiting","authors":"Yiying Zhu,&nbsp;Yining Wang,&nbsp;Yixin Sun,&nbsp;Zheng Xu,&nbsp;Mengmeng Shang","doi":"10.1016/j.jlumin.2024.120909","DOIUrl":"10.1016/j.jlumin.2024.120909","url":null,"abstract":"<div><div>Lead-free double perovskites (LFDPs) usually exhibit poor luminescent performance, and doping lanthanide ions (Ln<sup>3+</sup>) presents a promising solution to solve this problem. However, most Ln<sup>3+</sup> ions face difficulties in incorporating into LFDPs due to the mismatch in radius or valence state. Here, we successfully synthesized rare-earth (RE<sup>3+</sup>) based Cs<sub>2</sub>NaLuCl<sub>6</sub> (CNLC) LFDPs and achieved efficient green emission through doping Tb<sup>3+</sup> into CNLC. Introducing Sb<sup>3+</sup> improves the absorption efficiency of CNLC: Tb<sup>3+</sup> from 25.1 % to 73.5 % by establishing an energy transfer channel from Sb<sup>3+</sup> to Tb<sup>3+</sup>. Benefiting from the energy transfer, the CNLC: 0.01Sb<sup>3+</sup>, 0.10Tb<sup>3+</sup> phosphor produces blue-green dual emissions, highlighting its potential in white light-emitting diodes (WLEDs). In addition, an anti-counterfeiting pattern composed of CNLC: Sb<sup>3+</sup>, CNLC: Tb<sup>3+</sup>, and CNLC: Sb<sup>3+</sup>, Tb<sup>3+</sup> samples was fabricated, which shows their promising prospect in anti-counterfeiting applications.</div></div>","PeriodicalId":16159,"journal":{"name":"Journal of Luminescence","volume":"277 ","pages":"Article 120909"},"PeriodicalIF":3.3,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142314457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative investigation of structural, morphological and temperature-dependent photoluminescence characteristics of trivalent rare-earth-activated NaCaPO4 phosphors for solid-state lighting applications 用于固态照明应用的三价稀土活化 NaCaPO4 荧光粉的结构、形态和温度依赖性光致发光特性的比较研究
IF 3.3 3区 物理与天体物理
Journal of Luminescence Pub Date : 2024-09-23 DOI: 10.1016/j.jlumin.2024.120901
Mudasir Farooq , Haqnawaz Rafiq , Irfan Nazir , Ab Mateen Tantray , Hameed Younis , Mir Hashim Rasool
{"title":"Comparative investigation of structural, morphological and temperature-dependent photoluminescence characteristics of trivalent rare-earth-activated NaCaPO4 phosphors for solid-state lighting applications","authors":"Mudasir Farooq ,&nbsp;Haqnawaz Rafiq ,&nbsp;Irfan Nazir ,&nbsp;Ab Mateen Tantray ,&nbsp;Hameed Younis ,&nbsp;Mir Hashim Rasool","doi":"10.1016/j.jlumin.2024.120901","DOIUrl":"10.1016/j.jlumin.2024.120901","url":null,"abstract":"<div><div>This study explores the synthesis, structure, morphology, and photoluminescence features of trivalent RE<sup>3+</sup>-activated NaCaPO<sub>4</sub> phosphors, aiming to develop phosphor materials for white-light-emitting diode (WLED) applications. Single-phase polycrystalline NaCa<sub>(1-x)</sub> RE<sub>x</sub><sup>3+</sup> PO<sub>4</sub> (RE<sub>x</sub><sup>3+</sup> = Sm, Eu, Dy, and Tb) phosphor materials with various RE<sub>x</sub><sup>3+</sup>-doping percentiles were produced by a solid-state reaction process, which were analyzed using various characterization techniques. The FullProf Suite software program was used for phase evidence and crystalline structure analysis, confirming the composition of orthorhombic materials as a single phase. FE-SEM micrographs revealed asymmetrically stacked morphologies across all the compositions. This study reveals that trivalent RE<sup>3+</sup>-activated phosphors produced exceptional PL outcomes. Dexter's and Blasse's approaches were used to establish the interaction mechanisms and critical energy transfer ranges as dipole-dipole. Lifetime decay patterns were used to fit a bi-exponential function and the resulting values were approximated in milliseconds. This study reveals that trivalent RE<sup>3+</sup>-activated NaCaPO<sub>4</sub> phosphors, with their thermal resilience and color integrity, have potential applications in solid-state lighting (SSL) technology.</div></div>","PeriodicalId":16159,"journal":{"name":"Journal of Luminescence","volume":"277 ","pages":"Article 120901"},"PeriodicalIF":3.3,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142327868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multicolor and multimode luminescent lanthanide-doped Cs2NaInCl6:Sb3+ from visible to near infrared for versatile applications 掺杂镧系元素的 Cs2NaInCl6:Sb3+ 从可见光到近红外的多色多模发光,可用于多种应用领域
IF 3.3 3区 物理与天体物理
Journal of Luminescence Pub Date : 2024-09-22 DOI: 10.1016/j.jlumin.2024.120908
Xiaowei Deng , Xu Chen , Meng Wang , Weilong Qin , Gaoqiang Li , Jiaqiong Qin , Yanbing Han , Mochen Jia , Xinjian Li , Zhifeng Shi
{"title":"Multicolor and multimode luminescent lanthanide-doped Cs2NaInCl6:Sb3+ from visible to near infrared for versatile applications","authors":"Xiaowei Deng ,&nbsp;Xu Chen ,&nbsp;Meng Wang ,&nbsp;Weilong Qin ,&nbsp;Gaoqiang Li ,&nbsp;Jiaqiong Qin ,&nbsp;Yanbing Han ,&nbsp;Mochen Jia ,&nbsp;Xinjian Li ,&nbsp;Zhifeng Shi","doi":"10.1016/j.jlumin.2024.120908","DOIUrl":"10.1016/j.jlumin.2024.120908","url":null,"abstract":"<div><div>Double halide perovskites have shown admirable potential in promising optoelectronic applications due to simple synthesis, good stability and high structural tolerance. However, the poor optical properties caused by the parity-forbidden transitions posts a stringent limitation on their potential applications. Herein, we dope the lanthanide (Ln<sup>3+</sup>) ions with abundant energy levels into the Cs<sub>2</sub>NaInCl<sub>6</sub>:Sb<sup>3+</sup> single crystals, which not only achieve multicolor visible emissions spectra from blue to red light, but also expand to the near infrared region from 800 to 1900 nm. In addition, the phosphors enable the multimode emissions with the up-conversion and down-conversion photoluminescence. Intriguingly, the excitation source, and the excitation light intensity also endow the multicolor emissions. Thus, combining with the multicolor and multimode luminescent properties, Cs<sub>2</sub>NaInCl<sub>6</sub>:Sb<sup>3+</sup>/Ln<sup>3+</sup> could be applied to night vision imaging, substance detection, optical thermometry, white-light-emitting diodes (WLEDs) and anti-counterfeiting. The maximum value of relative temperature sensitivity reaches as high as 1.207 % K<sup>−1</sup>, which is relatively higher than those of most metal halide perovskites. Moreover, the single-source WLED displays Commission Internationale de L'Eclairage color coordinates (0.32, 0.31), a correlated color temperature of 6673 K, and color rendering index of 81.7. These results demonstrate the potential applications in the multifunctional photoelectric applications.</div></div>","PeriodicalId":16159,"journal":{"name":"Journal of Luminescence","volume":"277 ","pages":"Article 120908"},"PeriodicalIF":3.3,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142312195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CsPbBr3 perovskite thin film as a saturable absorber for MIR passively Q-switched lasers 用作中红外被动 Q 开关激光器可饱和吸收体的铯硼硼 3 包晶薄膜
IF 3.3 3区 物理与天体物理
Journal of Luminescence Pub Date : 2024-09-21 DOI: 10.1016/j.jlumin.2024.120910
Mingchao Shao , Xiaoyue Feng , Beilei Yuan , Jiahao Dong , Wenxin Li , Jie liu , Jingjing Liu , Bingqiang Cao , Jun Xu
{"title":"CsPbBr3 perovskite thin film as a saturable absorber for MIR passively Q-switched lasers","authors":"Mingchao Shao ,&nbsp;Xiaoyue Feng ,&nbsp;Beilei Yuan ,&nbsp;Jiahao Dong ,&nbsp;Wenxin Li ,&nbsp;Jie liu ,&nbsp;Jingjing Liu ,&nbsp;Bingqiang Cao ,&nbsp;Jun Xu","doi":"10.1016/j.jlumin.2024.120910","DOIUrl":"10.1016/j.jlumin.2024.120910","url":null,"abstract":"<div><div>Saturable absorbers (SAs) are key devices for passive Q-switching. All-inorganic halide perovskites demonstrate superior stability compared to their organic-inorganic hybrid counterparts, making them more promising candidates as SAs. A high-quality, all-inorganic halide perovskite CsPbBr<sub>3</sub>, designed for mid-infrared (MIR) broadband saturable absorption, has been successfully fabricated. The saturable absorption properties of this material within the MIR region have been thoroughly characterized. Characterization outcomes reveal that CsPbBr<sub>3</sub> possesses outstanding broadband saturable absorption characteristics. For the first time, passive Q-switching operation has been successfully achieved in the MIR region, specifically at wavelengths of 1.9 μm and 2.8 μm, utilizing the CsPbBr<sub>3</sub> SA. Peak powers of 5.57 W at the 1.9 μm wavelength and 5.23 W at the 2.8 μm wavelength were achieved. The experimental results indicate that CsPbBr<sub>3</sub> is an efficient SA material, holding significant promise for the development of pulsed lasers with broad bandwidth and high energy outputs.</div></div>","PeriodicalId":16159,"journal":{"name":"Journal of Luminescence","volume":"277 ","pages":"Article 120910"},"PeriodicalIF":3.3,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142314455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving the thermal stability and luminescence of Sr3Ga1.98In0.02Ge4O14:0.03Cr3+ through the efficient energy transfer 通过高效能量转移提高 Sr3Ga1.98In0.02Ge4O14:0.03Cr3+ 的热稳定性和发光性能
IF 3.3 3区 物理与天体物理
Journal of Luminescence Pub Date : 2024-09-21 DOI: 10.1016/j.jlumin.2024.120911
Haonan Huang, Jiayue Zhang, Bingkai Gao, Runqiu Peng, Zhijun Wang, Jiehong Li, Panlai Li
{"title":"Improving the thermal stability and luminescence of Sr3Ga1.98In0.02Ge4O14:0.03Cr3+ through the efficient energy transfer","authors":"Haonan Huang,&nbsp;Jiayue Zhang,&nbsp;Bingkai Gao,&nbsp;Runqiu Peng,&nbsp;Zhijun Wang,&nbsp;Jiehong Li,&nbsp;Panlai Li","doi":"10.1016/j.jlumin.2024.120911","DOIUrl":"10.1016/j.jlumin.2024.120911","url":null,"abstract":"<div><div>In this work, in order to explore the near-infrared (NIR) phosphor converted light emitting diodes (pc-LEDs), the NIR phosphor Sr<sub>3</sub>Ga<sub>1.98</sub>In<sub>0.02</sub>Ge<sub>4</sub>O<sub>14</sub>:0.03Cr<sup>3+</sup>, 0.05 Yb<sup>3+</sup> was achieved by the high temperature solid-state method, which presents a broadband emission with a large full width at half maximum (FWHM) of 291 nm due to the energy transfer from Cr<sup>3+</sup> to Yb<sup>3+</sup>. The emission intensity (at 423 K) of Sr<sub>3</sub>Ga<sub>1.98</sub>In<sub>0.02</sub>Ge<sub>4</sub>O<sub>14</sub>:0.03Cr<sup>3+</sup>, 0.05 Yb<sup>3+</sup> can be maintained at 77 % of room temperature, which is 14 % higher than that before co-doping, indicating that this phosphor has better thermal stability. The NIR pc-LEDs can be fabricated by combining the phosphor Sr<sub>3</sub>Ga<sub>1.98</sub>In<sub>0.02</sub>Ge<sub>4</sub>O<sub>14</sub>:0.03Cr<sup>3+</sup>, 0.05 Yb<sup>3+</sup> with the blue LED, which can be applied in night vision. The results demonstrated its potential application value.</div></div>","PeriodicalId":16159,"journal":{"name":"Journal of Luminescence","volume":"277 ","pages":"Article 120911"},"PeriodicalIF":3.3,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142312196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fluorinated triphenylamine phthalocyanine @ silica-coated gold nanorods: A photoactivated lysosome escape and targeting mitochondria two-photon probe for imaging-guided photothermal synergistic photodynamic therapy in cancer cells 氟化三苯胺酞菁@二氧化硅涂层金纳米棒:一种光激活溶酶体逃逸和靶向线粒体的双光子探针,用于对癌细胞进行成像引导的光热协同光动力治疗
IF 3.3 3区 物理与天体物理
Journal of Luminescence Pub Date : 2024-09-21 DOI: 10.1016/j.jlumin.2024.120900
Yating Shen , Junwen Zhou , Guizhi Chen , Jingtang Wang , Qiuhao Ye , Kuizhi Chen , Liting Qiu , Linying Chen , Yiru Peng
{"title":"Fluorinated triphenylamine phthalocyanine @ silica-coated gold nanorods: A photoactivated lysosome escape and targeting mitochondria two-photon probe for imaging-guided photothermal synergistic photodynamic therapy in cancer cells","authors":"Yating Shen ,&nbsp;Junwen Zhou ,&nbsp;Guizhi Chen ,&nbsp;Jingtang Wang ,&nbsp;Qiuhao Ye ,&nbsp;Kuizhi Chen ,&nbsp;Liting Qiu ,&nbsp;Linying Chen ,&nbsp;Yiru Peng","doi":"10.1016/j.jlumin.2024.120900","DOIUrl":"10.1016/j.jlumin.2024.120900","url":null,"abstract":"<div><div>The timely evasion of nanomedicines from lysosomes is essential to avert premature degradation under the acidic and hydrolytic conditions characteristic of these cellular compartments. However, the development of effective strategies has been hindered by the complexity of design material and the scarcity of practical methods. In this study, we have synthesized a novel nanoparticle, designated as TPA-BPAF-SiPc@AuNR@SiO<sub>2</sub>. This nanoparticle was prepared by encapsulating near-infrared fluorinated triphenylamine-substituted silicon phthalocyanines (TPA-BPAF-SiPc) within mesoporous silica-coated gold nanorods (AuNR@SiO<sub>2</sub>). TPA-BPAF-SiPc@AuNR@SiO<sub>2</sub> functions as a dual-function two-photon probe, facilitating photoactivated lysosome escape and targeting mitochondria. The inherent aggregation-induced emission (AIE) two-photon fluorescence of TPA-BPAF-SiPc is notably bright when encapsulated in AuNR@SiO<sub>2</sub> nanocarriers, a phenomenon not observed in polymer nanocarriers composed of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG<sub>2000</sub>) or in THF/water mixtures. Upon irradiation, this nanoparticle autonomously escapes from lysosomes and selectively targets mitochondria, a process can be visually monitored in real-time through the two-photon AIE fluorescence of TPA-BPAF-SiPc. Moreover, upon activation, TPA-BPAF-SiPc@AuNR@SiO<sub>2</sub> produces a substantial quantity of reactive oxygen species (ROS) and induces hyperthermia effects, showcasing its potential for effective photodynamic therapy (PDT) in conjunction with synergistic hyperthermia. Flow cytometry data corroborate the induction of tumor cell death through both necrosis and apoptosis pathways by TPA-BPAF-SiPc@AuNR@SiO<sub>2</sub>. This study underscores the potential of TPA-BPAF-SiPc@AuNR@SiO<sub>2</sub> as a multifunctional probe capable of enabling lysosome escape, mitochondria targeting, and two-photon fluorescence imaging-guided photothermal synergistic photodynamic therapy, specifically tailored for the treatment of breast cancer.</div></div>","PeriodicalId":16159,"journal":{"name":"Journal of Luminescence","volume":"277 ","pages":"Article 120900"},"PeriodicalIF":3.3,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142314454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Growth of anthracene microcrystals by the micro-space sublimation method and their photophysical properties 利用微空间升华法生长蒽微晶及其光物理特性
IF 3.3 3区 物理与天体物理
Journal of Luminescence Pub Date : 2024-09-20 DOI: 10.1016/j.jlumin.2024.120905
Wei-Long Xu, Jingli Hu, Sisi Pang, Min Zheng, Yuebin Lian, Yannan Zhang
{"title":"Growth of anthracene microcrystals by the micro-space sublimation method and their photophysical properties","authors":"Wei-Long Xu,&nbsp;Jingli Hu,&nbsp;Sisi Pang,&nbsp;Min Zheng,&nbsp;Yuebin Lian,&nbsp;Yannan Zhang","doi":"10.1016/j.jlumin.2024.120905","DOIUrl":"10.1016/j.jlumin.2024.120905","url":null,"abstract":"<div><div>Anthracene and its derivatives are widely utilized in optoelectronic devices due to their unique properties. Generally, single-crystal structures can avoid non-radiative recombination, enhance carrier mobility, and ultimately improve device performance. In this work, anthracene microcrystals were prepared using the micro-space sublimation method. Through real-time in-situ observation, the crystallization dynamics of anthracene molecules were revealed. Unlike traditional vacuum evaporation deposition technique, the close proximity of the substrate to the source facilitates the self-assembly of anthracene molecules into an ordered crystal structure. Six peaks can be observed in the photoluminescence spectrum, corresponding to various lowest excited state decay processes. The fluorescence intensity at the peak of 423 nm decreases significantly with increasing temperature. The reason for this is the relatively high exciton binding energy, which makes excitons more stable and easier to form. The lattice vibrations induced by increased temperature were found to affect the transport and separation of excitons. Time-resolved fluorescence spectroscopy imaging revealed that a relatively uniform distribution of fluorescence lifetimes in the anthracene microcrystals, indicating high crystallization quality. This work provides valuable insights for controlling the morphology and investigating the photophysical properties of organic semiconductors.</div></div>","PeriodicalId":16159,"journal":{"name":"Journal of Luminescence","volume":"277 ","pages":"Article 120905"},"PeriodicalIF":3.3,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142323540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Upconversion enabled optical limiting behaviour in Y2O3: Yb, Er nanophosphors under 532 nm and 1064 nm laser excitation 532 纳米和 1064 纳米激光激发下 Y2O3:Yb、Er 纳米磷酸盐的上转换光限制行为
IF 3.3 3区 物理与天体物理
Journal of Luminescence Pub Date : 2024-09-20 DOI: 10.1016/j.jlumin.2024.120903
J. Kawya, T.C. Sabari Girisun
{"title":"Upconversion enabled optical limiting behaviour in Y2O3: Yb, Er nanophosphors under 532 nm and 1064 nm laser excitation","authors":"J. Kawya,&nbsp;T.C. Sabari Girisun","doi":"10.1016/j.jlumin.2024.120903","DOIUrl":"10.1016/j.jlumin.2024.120903","url":null,"abstract":"<div><div>Y<sub>2</sub>O<sub>3</sub>: Yb, Er nanophosphors were synthesized by sol-gel approach and preliminary characterization confirms the existence of lanthanide dopants and the host material in the appropriate ratio with nanosphere-like morphology. Linear absorption displays visible and NIR absorption regions due to the sub-bandgap states involved in f-f transitions of Er- Yb ions. PL study shows more intense red emissions than blue and green emissions due to the combination of energy transfer and cross-relaxation process in Er ions. Wavelength-dependent nonlinear optical response of Y<sub>2</sub>O<sub>3</sub>: Yb, Er was examined by adapting the intensity-dependent Z-scan technique (open aperture) using nano pulsed Nd: YAG laser. Remarkably Y<sub>2</sub>O<sub>3</sub>: Yb, Er nanophosphors show reverse saturable absorption ascribed due to the two-photon absorption and two/three-photon absorption at 532 nm and 1064 nm respectively. The nonlinear absorption coefficient reliant on the intensity of the laser unambiguously demonstrates the presence of a sequential multi-photon absorption process. The results from the Z-scan experiment demonstrate the influence of the sub-bandgap energy states of the Y<sub>2</sub>O<sub>3</sub> matrix due to the Yb and Er dopants in the excited state absorption behaviour. Upconversion integrated optical limiting of Y<sub>2</sub>O<sub>3</sub>: Yb, Er nanophosphors provide a potential origin for designing high-performance broadband solid-state optical limiters for laser protection devices.</div></div>","PeriodicalId":16159,"journal":{"name":"Journal of Luminescence","volume":"277 ","pages":"Article 120903"},"PeriodicalIF":3.3,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142314456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信