Journal of Human Genetics最新文献

筛选
英文 中文
The frequency and pathogenicity of BRCA1 and BRCA2 variants in the general Japanese population 日本普通人群中 BRCA1 和 BRCA2 变体的频率和致病性。
IF 3.5 3区 生物学
Journal of Human Genetics Pub Date : 2024-02-27 DOI: 10.1038/s10038-024-01233-w
Masashi Idogawa, Tasuku Mariya, Yumi Tanaka, Tsuyoshi Saito, Hiroshi Nakase, Takashi Tokino, Akihiro Sakurai
{"title":"The frequency and pathogenicity of BRCA1 and BRCA2 variants in the general Japanese population","authors":"Masashi Idogawa, Tasuku Mariya, Yumi Tanaka, Tsuyoshi Saito, Hiroshi Nakase, Takashi Tokino, Akihiro Sakurai","doi":"10.1038/s10038-024-01233-w","DOIUrl":"10.1038/s10038-024-01233-w","url":null,"abstract":"Hereditary breast and ovarian cancer syndrome (HBOC) resulting from pathogenic variants of BRCA1 or BRCA2 is the most common and well-documented hereditary tumor. Although founder variants have been identified in population-based surveys in various countries, the types of variants are not uniform across races and regions. Recently, the Tohoku Medical Megabank Organization (ToMMo) released whole-genome sequence data including approximately 54,000 individuals from the general population of the Tohoku area in Japan. We analyzed these data and comprehensively identified the prevalence of BRCA1/2 pathogenic and truncating variants. We believe that an accurate understanding of the unique distribution and characteristics of pathogenic BRCA1/2 variants in Japan through this analysis will enable better surveillance and intervention for HBOC patients, not only in Japan but also worldwide.","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139972190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The c.1617del variant of TMEM260 is identified as the most frequent single gene determinant for Japanese patients with a specific type of congenital heart disease TMEM260的c.1617del变异被确定为日本特定类型先天性心脏病患者最常见的单基因决定因素。
IF 3.5 3区 生物学
Journal of Human Genetics Pub Date : 2024-02-26 DOI: 10.1038/s10038-024-01225-w
Tadashi Inoue, Ryuta Takase, Keiko Uchida, Kazuki Kodo, Kenji Suda, Yoriko Watanabe, Koh-Ichiro Yoshiura, Masaya Kunimatsu, Reina Ishizaki, Kenko Azuma, Kei Inai, Jun Muneuchi, Yoshiyuki Furutani, Hiroyuki Akagawa, Hiroyuki Yamagishi
{"title":"The c.1617del variant of TMEM260 is identified as the most frequent single gene determinant for Japanese patients with a specific type of congenital heart disease","authors":"Tadashi Inoue, Ryuta Takase, Keiko Uchida, Kazuki Kodo, Kenji Suda, Yoriko Watanabe, Koh-Ichiro Yoshiura, Masaya Kunimatsu, Reina Ishizaki, Kenko Azuma, Kei Inai, Jun Muneuchi, Yoshiyuki Furutani, Hiroyuki Akagawa, Hiroyuki Yamagishi","doi":"10.1038/s10038-024-01225-w","DOIUrl":"10.1038/s10038-024-01225-w","url":null,"abstract":"Although the molecular mechanisms underlying congenital heart disease (CHD) remain poorly understood, recent advances in genetic analysis have facilitated the exploration of causative genes for CHD. We reported that the pathogenic variant c.1617del of TMEM260, which encodes a transmembrane protein, is highly associated with CHD, specifically persistent truncus arteriosus (PTA), the most severe cardiac outflow tract (OFT) defect. Using whole-exome sequencing, the c.1617del variant was identified in two siblings with PTA in a Japanese family and in three of the 26 DNAs obtained from Japanese individuals with PTA. The c.1617del of TMEM260 has been found only in East Asians, especially Japanese and Korean populations, and the frequency of this variant in PTA is estimated to be next to that of the 22q11.2 deletion, the most well-known genetic cause of PTA. Phenotype of patients with c.1617del appears to be predominantly in the heart, although TMEM260 is responsible for structural heart defects and renal anomalies syndrome (SHDRA). The mouse TMEM260 variant (p.W535Cfs*56), synonymous with the human variant (p.W539Cfs*9), exhibited truncation and downregulation by western blotting, and aggregation by immunocytochemistry. In situ hybridization demonstrated that Tmem260 is expressed ubiquitously during embryogenesis, including in the development of cardiac OFT implicated in PTA. This expression may be regulated by a ~ 0.8 kb genomic region in intron 3 of Tmem260 that includes multiple highly conserved binding sites for essential cardiac transcription factors, thus revealing that the c.1617del variant of TMEM260 is the major single-gene variant responsible for PTA in the Japanese population.","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s10038-024-01225-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139972189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leigh syndrome with developmental regression and ataxia due to a novel splicing variant in the PMPCB gene 由 PMPCB 基因的新型剪接变异引起的伴有发育倒退和共济失调的 Leigh 综合征。
IF 3.5 3区 生物学
Journal of Human Genetics Pub Date : 2024-02-19 DOI: 10.1038/s10038-024-01226-9
Emma Matthews, Ella F. Whittle, Faraan Khan, Meriel McEntagart, Christopher J. Carroll
{"title":"Leigh syndrome with developmental regression and ataxia due to a novel splicing variant in the PMPCB gene","authors":"Emma Matthews, Ella F. Whittle, Faraan Khan, Meriel McEntagart, Christopher J. Carroll","doi":"10.1038/s10038-024-01226-9","DOIUrl":"10.1038/s10038-024-01226-9","url":null,"abstract":"Only five children with pathogenic PMPCB gene variants have been described and all carried missense variants. Clinical features included a Leigh-like syndrome of developmental regression, basal ganglia lesions and ataxia with or without dystonia and epilepsy. Three of the five died in childhood and none was older than age six when described. We report the first splice site variant in the PMPCB gene in a 39-year old individual who experienced developmental regression and ataxia following otitis media in childhood. A minigene assay confirms this variant results in aberrant splicing and skipping of exon 12.","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s10038-024-01226-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139905804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heterozygous CAPZA2 mutations cause global developmental delay, hypotonia with epilepsy: a case report and the literature review 杂合子 CAPZA2 突变导致全面发育迟缓、肌张力低下和癫痫:病例报告和文献综述。
IF 3.5 3区 生物学
Journal of Human Genetics Pub Date : 2024-02-19 DOI: 10.1038/s10038-024-01230-z
Xiao-Man Zhang, Kai-Li Xu, Jing-Hui Kong, Geng Dong, Shi-Jie Dong, Zhi-Xiao Yang, Shu-Jing Xu, Li Wang, Shu-Ying Luo, Yao-Dong Zhang, Chong-Chen Zhou, Wei-Yue Gu, Shi-Yue Mei
{"title":"Heterozygous CAPZA2 mutations cause global developmental delay, hypotonia with epilepsy: a case report and the literature review","authors":"Xiao-Man Zhang, Kai-Li Xu, Jing-Hui Kong, Geng Dong, Shi-Jie Dong, Zhi-Xiao Yang, Shu-Jing Xu, Li Wang, Shu-Ying Luo, Yao-Dong Zhang, Chong-Chen Zhou, Wei-Yue Gu, Shi-Yue Mei","doi":"10.1038/s10038-024-01230-z","DOIUrl":"10.1038/s10038-024-01230-z","url":null,"abstract":"CAPZA2 encodes the α2 subunit of CAPZA, which is vital for actin polymerization and depolymerization in humans. However, understanding of diseases associated with CAPZA2 remains limited. To date, only three cases have been documented with neurodevelopmental abnormalities such as delayed motor development, speech delay, intellectual disability, hypotonia, and a history of seizures. In this study, we document a patient who exhibited seizures, mild intellectual disability, and impaired motor development yet did not demonstrate speech delay or hypotonia. The patient also suffered from recurrent instances of respiratory infections, gastrointestinal and allergic diseases. A novel de novo splicing variant c.219+1 G > A was detected in the CAPZA2 gene through whole-exome sequencing. This variant led to exon 4 skipping in mRNA splicing, confirmed by RT-PCR and Sanger sequencing. To our knowledge, this is the third study on human CAPZA2 defects, documenting the fourth unambiguously diagnosed case. Furthermore, this splicing mutation type is reported here for the first time. Our research offers additional support for the existence of a CAPZA2-related non-syndromic neurodevelopmental disorder. Our findings augment our understanding of the phenotypic range associated with CAPZA2 deficiency and enrich the knowledge of the mutational spectrum of the CAPZA2 gene.","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139905803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expanding the genetic and phenotypic spectrum of congenital myasthenic syndrome: new homozygous VAMP1 splicing variants in 2 novel individuals 扩展先天性肌无力综合征的遗传和表型谱:2 名新患者的新同源 VAMP1 剪接变异。
IF 3.5 3区 生物学
Journal of Human Genetics Pub Date : 2024-02-14 DOI: 10.1038/s10038-024-01228-7
Francisco Javier Cotrina-Vinagre, María Elena Rodríguez-García, Lucía del Pozo-Filíu, Aurelio Hernández-Laín, Ana Arteche-López, Beatriz Morte, Marta Sevilla, Luis Alberto Pérez-Jurado, Pilar Quijada-Fraile, Ana Camacho, Francisco Martínez-Azorín
{"title":"Expanding the genetic and phenotypic spectrum of congenital myasthenic syndrome: new homozygous VAMP1 splicing variants in 2 novel individuals","authors":"Francisco Javier Cotrina-Vinagre, María Elena Rodríguez-García, Lucía del Pozo-Filíu, Aurelio Hernández-Laín, Ana Arteche-López, Beatriz Morte, Marta Sevilla, Luis Alberto Pérez-Jurado, Pilar Quijada-Fraile, Ana Camacho, Francisco Martínez-Azorín","doi":"10.1038/s10038-024-01228-7","DOIUrl":"10.1038/s10038-024-01228-7","url":null,"abstract":"We report the cases of two Spanish pediatric patients with hypotonia, muscle weakness and feeding difficulties at birth. Whole-exome sequencing (WES) uncovered two new homozygous VAMP1 (Vesicle Associated Membrane Protein 1) splicing variants, NM_014231.5:c.129+5 G > A in the boy patient (P1) and c.341-24_341-16delinsAGAAAA in the girl patient (P2). This gene encodes the vesicle-associated membrane protein 1 (VAMP1) that is a component of a protein complex involved in the fusion of synaptic vesicles with the presynaptic membrane. VAMP1 has a highly variable C-terminus generated by alternative splicing that gives rise to three main isoforms (A, B and D), being VAMP1A the only isoform expressed in the nervous system. In order to assess the pathogenicity of these variants, expression experiments of RNA for VAMP1 were carried out. The c.129+5 G > A and c.341-24_341-16delinsAGAAAA variants induced aberrant splicing events resulting in the deletion of exon 2 (r.5_131del; p.Ser2TrpfsTer7) in the three isoforms in the first case, and the retention of the last 14 nucleotides of the 3′ of intron 4 (r.340_341ins341-14_341-1; p.Ile114AsnfsTer77) in the VAMP1A isoform in the second case. Pathogenic VAMP1 variants have been associated with autosomal dominant spastic ataxia 1 (SPAX1) and with autosomal recessive presynaptic congenital myasthenic syndrome (CMS). Our patients share the clinical manifestations of CMS patients with two important differences: they do not show the typical electrophysiological pattern that suggests pathology of pre-synaptic neuromuscular junction, and their muscular biopsies present hypertrophic fibers type 1. In conclusion, our data expand both genetic and phenotypic spectrum associated with VAMP1 variants.","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139735422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CRISPR/Cas9-mediated knock-in cells of the late-onset Alzheimer’s disease-risk variant, SHARPIN G186R, reveal reduced NF-κB pathway and accelerated Aβ secretion CRISPR/Cas9 介导的晚发性阿尔茨海默病风险变体 SHARPIN G186R 基因敲入细胞显示 NF-κB 通路减少,Aβ 分泌加速。
IF 3.5 3区 生物学
Journal of Human Genetics Pub Date : 2024-02-13 DOI: 10.1038/s10038-024-01224-x
Yuya Asanomi, Tetsuaki Kimura, Nobuyoshi Shimoda, Daichi Shigemizu, Shumpei Niida, Kouichi Ozaki
{"title":"CRISPR/Cas9-mediated knock-in cells of the late-onset Alzheimer’s disease-risk variant, SHARPIN G186R, reveal reduced NF-κB pathway and accelerated Aβ secretion","authors":"Yuya Asanomi, Tetsuaki Kimura, Nobuyoshi Shimoda, Daichi Shigemizu, Shumpei Niida, Kouichi Ozaki","doi":"10.1038/s10038-024-01224-x","DOIUrl":"10.1038/s10038-024-01224-x","url":null,"abstract":"","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s10038-024-01224-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139729732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic etiology of truncus arteriosus excluding 22q11.2 deletion syndrome and identification of c.1617del, a prevalent variant in TMEM260, in the Japanese population 日本人群中排除 22q11.2 缺失综合征的动脉导管未闭的遗传学病因,以及 TMEM260 的流行变异 c.1617del 的鉴定。
IF 3.5 3区 生物学
Journal of Human Genetics Pub Date : 2024-02-13 DOI: 10.1038/s10038-024-01223-y
Hisao Yaoita, Eiichiro Kawai, Jun Takayama, Shinya Iwasawa, Naoya Saijo, Masayuki Abiko, Kouta Suzuki, Masato Kimura, Akira Ozawa, Gen Tamiya, Shigeo Kure, Atsuo Kikuchi
{"title":"Genetic etiology of truncus arteriosus excluding 22q11.2 deletion syndrome and identification of c.1617del, a prevalent variant in TMEM260, in the Japanese population","authors":"Hisao Yaoita, Eiichiro Kawai, Jun Takayama, Shinya Iwasawa, Naoya Saijo, Masayuki Abiko, Kouta Suzuki, Masato Kimura, Akira Ozawa, Gen Tamiya, Shigeo Kure, Atsuo Kikuchi","doi":"10.1038/s10038-024-01223-y","DOIUrl":"10.1038/s10038-024-01223-y","url":null,"abstract":"Truncus Arteriosus (TA) is a congenital heart disease characterized by a single common blood vessel emerging from the right and left ventricles instead of the main pulmonary artery and aorta. TA accounts for 4% of all critical congenital heart diseases. The most common cause of TA is 22q11.2 deletion syndrome, accounting for 12–35% of all TA cases. However, no major causes of TA other than 22q11.2 deletion have been reported. We performed whole-genome sequencing of 11 Japanese patients having TA without 22q11.2 deletion. Among five patients, we identified pathogenic variants in TMEM260; the biallelic loss-of-function variants of which have recently been associated with structural heart defects and renal anomalies syndrome (SHDRA). In one patient, we identified a de novo pathogenic variant in GATA6, and in another patient, we identified a de novo probably pathogenic variant in NOTCH1. Notably, we identified a prevalent variant in TMEM260 (ENST00000261556.6), c.1617del (p.Trp539Cysfs*9), in 8/22 alleles among the 11 patients. The c.1617del variant was estimated to occur approximately 23 kiloyears ago. Based on the allele frequency of the c.1617del variant in the Japanese population (0.36%), approximately 26% of Japanese patients afflicted with TA could harbor homozygous c.1617del variants. This study highlights TMEM260, especially c.1617del, as a major genetic cause of TA in the Japanese population.","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s10038-024-01223-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139729733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A splice acceptor variant in RGS6 associated with intellectual disability, microcephaly, and cataracts disproportionately promotes expression of a subset of RGS6 isoforms 与智力障碍、小头畸形和白内障有关的 RGS6 剪接受体变异会不成比例地促进 RGS6 同工酶亚型的表达。
IF 3.5 3区 生物学
Journal of Human Genetics Pub Date : 2024-02-09 DOI: 10.1038/s10038-024-01220-1
K. E. Ahlers-Dannen, J. Yang, M. M. Spicer, D. Fu, A. DeVore, R. A. Fisher
{"title":"A splice acceptor variant in RGS6 associated with intellectual disability, microcephaly, and cataracts disproportionately promotes expression of a subset of RGS6 isoforms","authors":"K. E. Ahlers-Dannen, J. Yang, M. M. Spicer, D. Fu, A. DeVore, R. A. Fisher","doi":"10.1038/s10038-024-01220-1","DOIUrl":"10.1038/s10038-024-01220-1","url":null,"abstract":"Intellectual disability (ID) is associated with an increased risk of developing psychiatric disorders, suggesting a common underlying genetic factor. Importantly, altered signaling and/or expression of regulator of G protein signaling 6 (RGS6) is associated with ID and numerous psychiatric disorders. RGS6 is highly conserved and undergoes complex alternative mRNA splicing producing ~36 protein isoforms with high sequence similarity historically necessitating a global approach in functional studies. However, our recent analysis in mice revealed RGS6 is most highly expressed in CNS with RGS6L(+GGL) isoforms predominating. A previously reported genetic variant in intron 17 of RGS6 (c.1369-1G>C), associated with ID, may provide further clues into RGS6L(+GGL) isoform functional delineation. This variant was predicted to alter a highly conserved canonical 3’ acceptor site creating an alternative branch point within exon 18 (included in a subset of RGS6L(+GGL) transcripts) and a frameshift forming an early stop codon. We previously identified this alternative splice site and demonstrated its use generates RGS6Lζ(+GGL) isoforms. Here, we show that the c.1369-1G>C variant disrupts the canonical, preferred (>90%) intron 17 splice site and leads to the exclusive use of the alternate exon 18 splice site, inducing disproportionate expression of a subset of isoforms, particularly RGS6Lζ(+GGL). Furthermore, RGS6 global knockout mice do not exhibit ID. Thus, ID caused by the c.1369-1G>C variant likely results from altered RGS6 isoform expression, rather than RGS6 isoform loss. In summary, these studies highlight the importance of proper RGS6 splicing and identify a previously unrecognized role of G protein signaling in ID.","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139706915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic association and functional validation of ZFP36L2 in non-syndromic orofacial cleft subtypes ZFP36L2 在非综合征口面裂亚型中的遗传关联和功能验证。
IF 3.5 3区 生物学
Journal of Human Genetics Pub Date : 2024-02-06 DOI: 10.1038/s10038-024-01222-z
Jialin Sun, Mujia Li, Huaqin Sun, Ziyuan Lin, Bing Shi, Zhonglin Jia
{"title":"Genetic association and functional validation of ZFP36L2 in non-syndromic orofacial cleft subtypes","authors":"Jialin Sun, Mujia Li, Huaqin Sun, Ziyuan Lin, Bing Shi, Zhonglin Jia","doi":"10.1038/s10038-024-01222-z","DOIUrl":"10.1038/s10038-024-01222-z","url":null,"abstract":"Non-syndromic orofacial cleft (NSOC) is one of the most common craniofacial malformations with complex etiology. This study aimed to explore the role of specific SNPs in ZFP36L2 and its functional relevance in zebrafish models. We analyzed genetic data of the Chinese Han population from two previous GWAS, comprising of 2512 cases and 2255 controls. Based on the Hardy-Weinberg Equilibrium (HWE) and minor allele frequency (MAF), SNPs in the ZFP36L2 were selected for association analysis. In addition, zebrafish models were used to clarify the in-situ expression pattern of zfp36l2 and the impact of its Morpholino-induced knockdown. Via association analysis, rs7933 in ZFP36L2 was significantly associated with various non-syndromic cleft lip-only subtypes, potentially conferring a protective effect. Zebrafish embryos showed elevated expression of zfp36l2 in the craniofacial region during critical stages of oral cavity formation. Furthermore, Morpholino-induced knockdown of zfp36l2 led to craniofacial abnormalities, including cleft lip, which was partially rescued by the addition of zfp36l2 mRNA. Our findings highlight the significance of ZFP36L2 in the etiology of NSOC, supported by both human genetic association data and functional studies in zebrafish. These results pave the way for further exploration of targeted interventions for craniofacial malformations.","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139697582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cardiac manifestations of human ACTA2 variants recapitulated in a zebrafish model 在斑马鱼模型中再现人类 ACTA2 变体的心脏表现。
IF 3.5 3区 生物学
Journal of Human Genetics Pub Date : 2024-02-05 DOI: 10.1038/s10038-024-01221-0
Wulan Apridita Sebastian, Masanori Inoue, Nobuyuki Shimizu, Ryosuke Sato, Saori Oguri, Tomoyo Itonaga, Shintaro Kishimoto, Hiroshi Shiraishi, Toshikatsu Hanada, Kenji Ihara
{"title":"Cardiac manifestations of human ACTA2 variants recapitulated in a zebrafish model","authors":"Wulan Apridita Sebastian, Masanori Inoue, Nobuyuki Shimizu, Ryosuke Sato, Saori Oguri, Tomoyo Itonaga, Shintaro Kishimoto, Hiroshi Shiraishi, Toshikatsu Hanada, Kenji Ihara","doi":"10.1038/s10038-024-01221-0","DOIUrl":"10.1038/s10038-024-01221-0","url":null,"abstract":"The ACTA2 gene encodes actin α2, a major smooth muscle protein in vascular smooth muscle cells. Missense variants in the ACTA2 gene can cause inherited thoracic aortic diseases with characteristic symptoms, such as dysfunction of smooth muscle cells in the lungs, brain vessels, intestines, pupils, bladder, or heart. We identified a heterozygous missense variant of Gly148Arg (G148R) in a patient with a thoracic aortic aneurysm, dissection, and left ventricular non-compaction. We used zebrafish as an in vivo model to investigate whether or not the variants might cause functional or histopathological abnormalities in the heart. Following the fertilization of one-cell stage embryos, we injected in vitro synthesized ACTA2 mRNA of wild-type, novel variant G148R, or the previously known pathogenic variant Arg179His (R179H). The embryos were maintained and raised for 72 h post-fertilization for a heart analysis. Shortening fractions of heart were significantly reduced in both pathogenic variants. A histopathological evaluation showed that the myocardial wall of ACTA2 pathogenic variants was thinner than that of the wild type, and the total cell number within the myocardium was markedly decreased in all zebrafish with pathogenic variants mRNAs. Proliferating cell numbers were also significantly decreased in the endothelial and myocardial regions of zebrafish with ACTA2 variants compared to the wild type. These results demonstrate the effects of ACTA2 G148R and R179H on the development of left ventricle non-compaction and cardiac morphological abnormalities. Our study highlights the previously unknown significance of the ACTA2 gene in several aspects of cardiovascular development.","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s10038-024-01221-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139692029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信