Aye Ko Ko Minn, Motomichi Matsuzaki, Akira Narita, Takamitsu Funayama, Yurii Kotsar, Satoshi Makino, Jun Takayama, Shinichi Kuriyama, Gen Tamiya
{"title":"Profiling of runs of homozygosity from whole-genome sequence data in Japanese biobank.","authors":"Aye Ko Ko Minn, Motomichi Matsuzaki, Akira Narita, Takamitsu Funayama, Yurii Kotsar, Satoshi Makino, Jun Takayama, Shinichi Kuriyama, Gen Tamiya","doi":"10.1038/s10038-025-01331-3","DOIUrl":null,"url":null,"abstract":"<p><p>Runs of homozygosity (ROHs) are widely observed across the genomes of various species and have been reported to be associated with many traits and common diseases, as well as rare recessive diseases, in human populations. Although single nucleotide polymorphism (SNP) array data have been used in previous studies on ROHs, recent advances in whole-genome sequencing (WGS) technologies and the development of nationwide cohorts/biobanks are making high-density genomic data increasingly available, and it is consequently becoming more feasible to detect ROHs at higher resolution. In the study, we searched for ROHs in two high-coverage WGS datasets from 3552 Japanese individuals and 192 three-generation families (consisting of 1120 family members) in prospective genomic cohorts. The results showed that a considerable number of ROHs, especially short ones that may have remained undetected in conventionally used SNP-array data, can be detected in the WGS data. By filtering out sequencing errors and leveraging pedigree information, longer ROHs are more likely to be detected in WGS data than in SNP-array data. Additionally, we identified gene families within ROH islands that are associated with enriched pathways related to sensory perception of taste and odors, suggesting potential signatures of selection in these key genomic regions.</p>","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Human Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s10038-025-01331-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Runs of homozygosity (ROHs) are widely observed across the genomes of various species and have been reported to be associated with many traits and common diseases, as well as rare recessive diseases, in human populations. Although single nucleotide polymorphism (SNP) array data have been used in previous studies on ROHs, recent advances in whole-genome sequencing (WGS) technologies and the development of nationwide cohorts/biobanks are making high-density genomic data increasingly available, and it is consequently becoming more feasible to detect ROHs at higher resolution. In the study, we searched for ROHs in two high-coverage WGS datasets from 3552 Japanese individuals and 192 three-generation families (consisting of 1120 family members) in prospective genomic cohorts. The results showed that a considerable number of ROHs, especially short ones that may have remained undetected in conventionally used SNP-array data, can be detected in the WGS data. By filtering out sequencing errors and leveraging pedigree information, longer ROHs are more likely to be detected in WGS data than in SNP-array data. Additionally, we identified gene families within ROH islands that are associated with enriched pathways related to sensory perception of taste and odors, suggesting potential signatures of selection in these key genomic regions.
期刊介绍:
The Journal of Human Genetics is an international journal publishing articles on human genetics, including medical genetics and human genome analysis. It covers all aspects of human genetics, including molecular genetics, clinical genetics, behavioral genetics, immunogenetics, pharmacogenomics, population genetics, functional genomics, epigenetics, genetic counseling and gene therapy.
Articles on the following areas are especially welcome: genetic factors of monogenic and complex disorders, genome-wide association studies, genetic epidemiology, cancer genetics, personal genomics, genotype-phenotype relationships and genome diversity.