{"title":"Regulation of MCCC1 expression by a Parkinson's disease-associated intronic variant: implications for pathogenesis.","authors":"Shunsaku Sogabe, Hiroko Nakano, Yusuke Ogasahara, Pei-Chieng Cha, Yuko Ando, Mariko Taniguchi-Ikeda, Ryusaku Matsumoto, Motoi Kanagawa, Kazuhiro Kobayashi, Shigeo Murayama, Takashi Aoi, Tatsushi Toda, Wataru Satake","doi":"10.1038/s10038-025-01335-z","DOIUrl":null,"url":null,"abstract":"<p><p>Parkinson's disease (PD) is a common neurodegenerative disorder characterized by dopaminergic neuron loss and α-synuclein aggregation. While some familial cases result from single-gene mutations, most are sporadic, involving complex genetic and environmental interactions. Among PD risk loci identified through genome-wide association studies, MCCC1 encodes a mitochondrial enzyme essential for leucine catabolism; however, the causal variant remains unclear. Here, we investigated whether the intronic variant rs12637471 regulates MCCC1 mRNA expression and influences PD risk. Postmortem brain analysis revealed significantly elevated MCCC1 mRNA levels in G-allele carriers, consistent with peripheral tissue eQTL data from GTEx. Using CRISPR/Cas9-edited induced pluripotent stem cells, we generated isogenic lines differing only at rs12637471 and observed increased MCCC1 expression in G-allele dopaminergic neurons. Given MCCC1's mitochondrial role, its dysregulation may impact mitochondrial homeostasis, autophagy, or inflammation, potentially contributing to PD pathogenesis.</p>","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Human Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s10038-025-01335-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by dopaminergic neuron loss and α-synuclein aggregation. While some familial cases result from single-gene mutations, most are sporadic, involving complex genetic and environmental interactions. Among PD risk loci identified through genome-wide association studies, MCCC1 encodes a mitochondrial enzyme essential for leucine catabolism; however, the causal variant remains unclear. Here, we investigated whether the intronic variant rs12637471 regulates MCCC1 mRNA expression and influences PD risk. Postmortem brain analysis revealed significantly elevated MCCC1 mRNA levels in G-allele carriers, consistent with peripheral tissue eQTL data from GTEx. Using CRISPR/Cas9-edited induced pluripotent stem cells, we generated isogenic lines differing only at rs12637471 and observed increased MCCC1 expression in G-allele dopaminergic neurons. Given MCCC1's mitochondrial role, its dysregulation may impact mitochondrial homeostasis, autophagy, or inflammation, potentially contributing to PD pathogenesis.
期刊介绍:
The Journal of Human Genetics is an international journal publishing articles on human genetics, including medical genetics and human genome analysis. It covers all aspects of human genetics, including molecular genetics, clinical genetics, behavioral genetics, immunogenetics, pharmacogenomics, population genetics, functional genomics, epigenetics, genetic counseling and gene therapy.
Articles on the following areas are especially welcome: genetic factors of monogenic and complex disorders, genome-wide association studies, genetic epidemiology, cancer genetics, personal genomics, genotype-phenotype relationships and genome diversity.