Journal of Ginseng Research最新文献

筛选
英文 中文
Monoclonal antibody-based enzyme-linked immunosorbent assay for quantification of majonoside R2 as an authentication marker for Nngoc Linh and Lai Chau ginsengs 基于单克隆抗体的酶联免疫吸附测定法,用于定量检测作为玉莲和莱州人参鉴别标志的雄花苷 R2
IF 6.8 2区 医学
Journal of Ginseng Research Pub Date : 2024-05-23 DOI: 10.1016/j.jgr.2024.05.004
{"title":"Monoclonal antibody-based enzyme-linked immunosorbent assay for quantification of majonoside R2 as an authentication marker for Nngoc Linh and Lai Chau ginsengs","authors":"","doi":"10.1016/j.jgr.2024.05.004","DOIUrl":"10.1016/j.jgr.2024.05.004","url":null,"abstract":"<div><h3>Background</h3><p>Recent years have witnessed increasing interest in the high amount of ocotillol-type saponin in <em>Panax vietnamensis</em>, particularly in relation to majonoside R2 (MR2). This unique 3%–5% MR2 content impart Ngoc Linh and Lai Chau ginsengs with unique pharmacological activities. However, in the commercial domain, unauthentic species have infiltrated and significantly hindered access to the authentic, efficacious variety. Thus, suitable analytical techniques for distinguishing authentic Vietnamese ginseng species from others is becoming increasingly crucial. Therefore, MR2 is attracting considerable attention as a target requiring effective management measures.</p></div><div><h3>Methods</h3><p>An enzyme-linked immunosorbent assay (ELISA) was developed by producing monoclonal antibodies against MR2 (mAb 16E11). The method was thoroughly validated, and the potential of the immunoassay was confirmed by high-performance liquid chromatography with ultraviolet spectroscopy. Furthermore, ELISA was applied to the assessment of the MR2 concentrations of various <em>Panax</em> spp., including Korean, American, and Japanese ginsengs.</p></div><div><h3>Results and conclusions</h3><p>An icELISA using mAb 16E11 exhibited linearity between 3.91 and 250 ng/mL of MR2, with detection and quantification limits of 1.53 and 2.50 <span><math><mrow><mo>−</mo></mrow></math></span> 46.6 ng/mL, respectively. Based on this study, the developed icELISA using mAb 16E11 could be a valuable tool for analyzing MR2 level to distinguish authentic Ngoc Linh and Lai Chau ginsengs from unauthentic ones. Furthermore, the analysis of the samples demonstrated that Ngoc Linh and Lai Chau ginsengs exhibit a notably higher MR2 value than all other <em>Panax</em> spp. Thus, MR2 might be their ideal marker compound, and various bioactivities of this species should be explored.</p></div>","PeriodicalId":16035,"journal":{"name":"Journal of Ginseng Research","volume":"48 5","pages":"Pages 474-480"},"PeriodicalIF":6.8,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1226845324000885/pdfft?md5=e662a6409165969463849ebf8395fd73&pid=1-s2.0-S1226845324000885-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141135396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to “Korean red ginseng extract ameliorates melanogenesis in humans and induces anti-photo aging effects in ultraviolet B-irradiated hairless mice” [J Ginseng Res 44 (2020) 496–505] 对高丽红参提取物改善人体黑色素生成和诱导紫外线 B 辐射无毛小鼠抗光老化作用的更正 [《人参研究杂志》44 (2020) 496-505]
IF 6.3 2区 医学
Journal of Ginseng Research Pub Date : 2024-05-23 DOI: 10.1016/j.jgr.2024.05.005
Evelyn Saba , Seung-Hyung Kim , Yuan Yee Lee , Chae-Kyu Park , Jae-Wook Oh , Tae-Hwan Kim , Hyun-Kyoung Kim , Seong-Soo Roh , Man Hee Rhee
{"title":"Corrigendum to “Korean red ginseng extract ameliorates melanogenesis in humans and induces anti-photo aging effects in ultraviolet B-irradiated hairless mice” [J Ginseng Res 44 (2020) 496–505]","authors":"Evelyn Saba ,&nbsp;Seung-Hyung Kim ,&nbsp;Yuan Yee Lee ,&nbsp;Chae-Kyu Park ,&nbsp;Jae-Wook Oh ,&nbsp;Tae-Hwan Kim ,&nbsp;Hyun-Kyoung Kim ,&nbsp;Seong-Soo Roh ,&nbsp;Man Hee Rhee","doi":"10.1016/j.jgr.2024.05.005","DOIUrl":"10.1016/j.jgr.2024.05.005","url":null,"abstract":"","PeriodicalId":16035,"journal":{"name":"Journal of Ginseng Research","volume":"48 4","pages":"Pages 435-436"},"PeriodicalIF":6.3,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1226845324000897/pdfft?md5=916ed97e94c69b80a63c9522518055d8&pid=1-s2.0-S1226845324000897-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141134666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanism of Panax notoginseng saponins modulation of miR-214-3p/NR1I3 affecting the pharmacodynamics and pharmacokinetics of warfarin 三七皂苷调节 miR-214-3p/NR1I3 影响华法林药效学和药代动力学的机制
IF 6.8 2区 医学
Journal of Ginseng Research Pub Date : 2024-05-18 DOI: 10.1016/j.jgr.2024.05.003
{"title":"Mechanism of Panax notoginseng saponins modulation of miR-214-3p/NR1I3 affecting the pharmacodynamics and pharmacokinetics of warfarin","authors":"","doi":"10.1016/j.jgr.2024.05.003","DOIUrl":"10.1016/j.jgr.2024.05.003","url":null,"abstract":"<div><h3>Background</h3><p>With the prevalence of dietary supplements, the use of combinations of herbs and drugs is gradually increasing, together with the risk of drug interactions. In our clinical work, we unexpectedly found that the combination of Panax notoginseng and warfarin, which are herbs that activate blood circulation and remove blood stasis, showed antagonistic effects instead. The purpose of this study was to evaluate the drug interaction between Panax <em>notoginseng saponins</em> (PNS) and warfarin, the main active ingredient of Panax notoginseng, and to explore the interaction mechanism.</p></div><div><h3>Methods</h3><p>The effects and mechanisms of PNS on the pharmacodynamics and pharmacokinetics of warfarin were explored mainly in Sprague–Dawley rats and HepG2 cells. Elisa was used to detect the concentrations of coagulation factors, HPLC-MS to detect the blood concentrations of warfarin in rats, immunoblotting was employed to examine protein levels, qRT-PCR to detect mRNA levels, cellular immunofluorescence to detect the localization of NR1I3, and dual luciferase to verify the binding of miR-214-3p and NR1I3.</p></div><div><h3>Results</h3><p>PNS significantly accelerated warfarin metabolism and reduced its efficacy, accompanied by increased expression of NR1I3 and CYP2C9. Interference with NR1I3 rescued the accelerated metabolism of warfarin induce by PNS co-administration. In addition, we demonstrated that PNS significantly reduced miR-214-3p expression, whereas miR-214-3p overexpression reduced NR1I3 and CYP2C9 expression, resulting in a weakened antagonistic effect of PNS on warfarin. Additionally, we found that miR-214-3p bound directly to NR1I3 3′-UTR and significantly downregulated NR1I3 expression.</p></div><div><h3>Conclusion</h3><p>Our study demonstrated that PNS accelerates warfarin metabolism and reduces its pharmacodynamics by downregulating miR-214-3p, leading to increased expression of its target gene NR1I3, these findings provide new insights for clinical drug applications to avoid adverse effects.</p></div>","PeriodicalId":16035,"journal":{"name":"Journal of Ginseng Research","volume":"48 5","pages":"Pages 494-503"},"PeriodicalIF":6.8,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1226845324000873/pdfft?md5=b55a2f0f2bb8f6ae96158b20db9020e5&pid=1-s2.0-S1226845324000873-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141143253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The necessity of eliminating the interference of panaxatriol saponins to maximize the preventive effect of panaxadiol saponins against Parkinson's disease in rats 消除三七皂苷干扰以最大限度发挥三七皂苷对大鼠帕金森病的预防作用的必要性
IF 6.8 2区 医学
Journal of Ginseng Research Pub Date : 2024-05-14 DOI: 10.1016/j.jgr.2024.05.002
{"title":"The necessity of eliminating the interference of panaxatriol saponins to maximize the preventive effect of panaxadiol saponins against Parkinson's disease in rats","authors":"","doi":"10.1016/j.jgr.2024.05.002","DOIUrl":"10.1016/j.jgr.2024.05.002","url":null,"abstract":"<div><h3>Background</h3><p>The effects of individual panaxadiol saponin and panaxatriol saponin on rodent models of Parkinson's disease (PD) have been recognized. However, it is not clear whether purified total ginsenosides as an entirety has effect against PD in rat model. This study compared the protective effects of a purified panaxadiol saponin fraction (PDSF), a purified panaxatriol saponin fraction (PTSF), and their mixtures against the rotenone (ROT)-induced PD in rats.</p></div><div><h3>Methods</h3><p>Potential effects of PDSF, PTSF, and their mixtures against motor dysfunction and impairments of nigrostriatal dopaminergic neurons (DN), blood-brain barrier (BBB), cerebrovascular endothelial cells (CEC), and glial cells were measured in the models of ROT-induced PD rats and cell damage. Pro-inflammatory NF-kB p65 (p65) activation was localized in DN and other cells in the striatum.</p></div><div><h3>Results</h3><p>PDSF and PTSF had a dose-dependent effect against motor dysfunction with a larger effective dose range for PDSF. PDSF protected CEC, glial cells, and DN in models of PD rats and cell damage, while PTSF had no such protections. Chronic ROT exposure potently activated p65 in CEC with enhanced pro-inflammatory and decreased anti-inflammatory factors and impaired BBB in the striatum, PDSF almost completely blocked the ROT-induced p65 activation and maintained both anti- and pro-inflammatory factors at normal levels and BBB integrity, but PTSF aggravated the p65 activation with impaired BBB. Furthermore, PTSF nullified all the effects of PDSF when they were co-administrated.</p></div><div><h3>Conclusion</h3><p>PDSF had significant protective effect against the ROT-induced PD in rats by protecting CEC, glial cells, and DN, likely through inhibiting NF-κB p65 in CEC from triggering neuroinflammation, and also directly protecting glial cells and neurons against ROT-induced toxicity. PDSF has great potential for preventing and treating PD.</p></div>","PeriodicalId":16035,"journal":{"name":"Journal of Ginseng Research","volume":"48 5","pages":"Pages 464-473"},"PeriodicalIF":6.8,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1226845324000861/pdfft?md5=43d1b094254e964059d2a1307722033a&pid=1-s2.0-S1226845324000861-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141048091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural analysis, anti-inflammatory activity of the main water-soluble acidic polysaccharides (AGBP-A3) from Panax quinquefolius L berry 三七浆果中主要水溶性酸性多糖(AGBP-A3)的结构分析和抗炎活性
IF 6.8 2区 医学
Journal of Ginseng Research Pub Date : 2024-05-08 DOI: 10.1016/j.jgr.2024.05.001
{"title":"Structural analysis, anti-inflammatory activity of the main water-soluble acidic polysaccharides (AGBP-A3) from Panax quinquefolius L berry","authors":"","doi":"10.1016/j.jgr.2024.05.001","DOIUrl":"10.1016/j.jgr.2024.05.001","url":null,"abstract":"<div><h3>Background</h3><p><em>Panax quinquefolius</em> L, widely recognized for its valuable contributions to medicine, has aroused considerable attention globally. Different from the extensive research has been dedicated to the root of <em>P. quinquefolius</em>, its berry has received relatively scant focus. Given its promising medicinal properties, this study was focused on the structural characterizations and anti-inflammatory potential of acidic polysaccharides from the <em>P. quinquefolius</em> berry.</p></div><div><h3>Materials and methods</h3><p><em>P. quinquefolius</em> berry was extracted with hot water, precipitated by alcohol, separated by DEAE-52-cellulose column to give a series of fractions. One of these fractions was further purified via Sephadex G-200 column to give three fractions. Then, the main fraction named as AGBP-A3 was characterized by methylation analysis, NMR spectroscopy, etc. Its anti-inflammatory activity was assessed by RAW 264.7 cell model, zebrafish model and molecular docking.</p></div><div><h3>Results</h3><p>The main chain comprised of <em>α</em>-L-Rhap, <em>α</em>-D-GalAp and <em>β</em>-D-Galp, while the branch consisted mainly of <em>α</em>-L-Araf, <em>β</em>-D-Glcp, <em>α</em>-D-GalAp, <em>β</em>-D-Galp. The RAW264.7 cell assay results showed that the inhibition rates against IL-6 and IL-1<em>β</em> secretion at the concentration of 625 ng/mL were 24.83 %, 11.84 %, while the inhibition rate against IL-10 secretion was 70.17 % at the concentration of 312 ng/mL. In the zebrafish assay, the migrating neutrophils were significantly reduced in number, and their migration to inflammatory tissues was inhibited. Molecular docking predictions correlated well with the results of the anti-inflammatory assay.</p></div><div><h3>Conclusion</h3><p>The present study demonstrated the structure of acidic polysaccharides of <em>P. quinquefolius</em> berry and their effect on inflammation, providing a reference for screening anti-inflammatory drugs.</p></div>","PeriodicalId":16035,"journal":{"name":"Journal of Ginseng Research","volume":"48 5","pages":"Pages 454-463"},"PeriodicalIF":6.8,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S122684532400085X/pdfft?md5=8ecd2e0266fe3f2d5ee70973358f10cb&pid=1-s2.0-S122684532400085X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141028031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ginseng as a therapeutic target to alleviate gut and brain diseases via microbiome regulation 以人参为治疗靶标,通过调节微生物组缓解肠道和脑部疾病
IF 6.3 2区 医学
Journal of Ginseng Research Pub Date : 2024-04-27 DOI: 10.1016/j.jgr.2024.04.005
Hamid Iqbal, Yihyo Kim, Mirim Jin, Dong-kwon Rhee
{"title":"Ginseng as a therapeutic target to alleviate gut and brain diseases via microbiome regulation","authors":"Hamid Iqbal, Yihyo Kim, Mirim Jin, Dong-kwon Rhee","doi":"10.1016/j.jgr.2024.04.005","DOIUrl":"https://doi.org/10.1016/j.jgr.2024.04.005","url":null,"abstract":"The human gut, which contains a diverse microbiome, plays an important role in maintaining physiological balance and preserving the immune system. The complex interplay between the central nervous system (CNS) and the gut microbiome has gained significant attention due to its profound implications for overall health, particularly for gut and brain disorders. There is emerging evidence that the gut-brain axis (GBA) represents a bidirectional communication system between the CNS and the gastrointestinal tract and plays a pivotal role in regulating many aspects of human health. Ginseng has shown potential to ameliorate conditions associated with dysbiosis, such as gut and CNS disorders by restoring microbial balance and enhancing gut barrier function. This comprehensive review provides valuable insights into the potential of ginseng as a herbal modulator of GBA as a therapeutic intervention for preventing and treating gut and neurological diseases via microbiota regulation to ultimately enhance overall health. Furthermore, we emphasize the therapeutic benefits of ginseng, its ability to enhance beneficial probiotics, such as Firmicutes, , , and while reducing pathogenic bacteria prevalence, such as , and Proteobacteria. Although the connection between ginseng regulation of microbial communities in response to the gut and neuropsychiatric disorders is lacking, additional investigations are warranted to elucidate the underlying mechanisms, optimize dosages, and explore the clinical relevance of ginseng in promoting GBA balance and ultimately overall health.","PeriodicalId":16035,"journal":{"name":"Journal of Ginseng Research","volume":"17 1","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140838453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of a key signaling network regulating perennating bud dormancy in Panax ginseng 人参常年芽休眠的关键信号网络的鉴定
IF 6.8 2区 医学
Journal of Ginseng Research Pub Date : 2024-04-23 DOI: 10.1016/j.jgr.2024.04.004
{"title":"Identification of a key signaling network regulating perennating bud dormancy in Panax ginseng","authors":"","doi":"10.1016/j.jgr.2024.04.004","DOIUrl":"10.1016/j.jgr.2024.04.004","url":null,"abstract":"<div><h3>Background</h3><p>The cycle of seasonal dormancy of perennating buds is an essential adaptation of perennial plants to unfavorable winter conditions. Plant hormones are key regulators of this critical biological process, which is intricately connected with diverse internal and external factors. Recently, global warming has increased the frequency of aberrant temperature events that negatively affect the dormancy cycle of perennials. Although many studies have been conducted on the perennating organs of <em>Panax ginseng</em>, the molecular aspects of bud dormancy in this species remain largely unknown.</p></div><div><h3>Methods</h3><p>In this study, the molecular physiological responses of three <em>P. ginseng</em> cultivars with different dormancy break phenotypes in the spring were dissected using comparative genome-wide RNA-seq and network analyses. These analyses identified a key role for abscisic acid (ABA) activity in the regulation of bud dormancy. Gene set enrichment analysis revealed that a transcriptional network comprising stress-related hormone responses made a major contribution to the maintenance of dormancy.</p></div><div><h3>Results</h3><p>Increased expression levels of cold response and photosynthesis-related genes were associated with the transition from dormancy to active growth in perennating buds. Finally, the expression patterns of genes encoding ABA transporters, receptors (<em>PYR</em>s/<em>PYL</em>s), <em>PROTEIN PHOSPHATASE</em> 2Cs (<em>PP2C</em>s), and <em>DELLA</em>s were highly correlated with different dormancy states in three <em>P. ginseng</em> cultivars.</p></div><div><h3>Conclusion</h3><p>This study provides evidence that ABA and stress signaling outputs are intricately connected with a key signaling network to regulate bud dormancy under seasonal conditions in the perennial plant <em>P. ginseng</em>.</p></div>","PeriodicalId":16035,"journal":{"name":"Journal of Ginseng Research","volume":"48 5","pages":"Pages 511-519"},"PeriodicalIF":6.8,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1226845324000836/pdfft?md5=1c47b5f59fd668282e1b50b0a8a22ad9&pid=1-s2.0-S1226845324000836-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140772345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Panax species and their bioactive components on allergic airway diseases 三七及其生物活性成分对过敏性气道疾病的影响
IF 6.3 2区 医学
Journal of Ginseng Research Pub Date : 2024-04-21 DOI: 10.1016/j.jgr.2024.04.003
Dahee Shim , Yeeun Bak , Han-Gyu Choi , Seunghyun Lee , Sang Chul Park
{"title":"Effects of Panax species and their bioactive components on allergic airway diseases","authors":"Dahee Shim ,&nbsp;Yeeun Bak ,&nbsp;Han-Gyu Choi ,&nbsp;Seunghyun Lee ,&nbsp;Sang Chul Park","doi":"10.1016/j.jgr.2024.04.003","DOIUrl":"10.1016/j.jgr.2024.04.003","url":null,"abstract":"<div><p><em>Panax</em> species include <em>Panax ginseng</em> Meyer, <em>Panax quinquefolium</em> L., <em>Panax notoginseng</em>, <em>Panax japonicum</em>, <em>Panax trifolium</em>, and <em>Panax pseudoginseng</em>, which contain bioactive components (BCs) such as ginsenosides and polysaccharides. Recently, growing evidence has revealed the pharmacological effects of <em>Panax</em> species and their BCs on allergic airway diseases (AADs), including allergic asthma (AA) and allergic rhinitis (AR). AADs are characterized by damaged epithelium, sustained acquired immune responses with enforced Th2 responses, allergen-specific IgE production, and enhanced production of histamine and leukotrienes by activated mast cells and basophils. In this review, we summarize how <em>Panax</em> species and their BCs modulate acquired immune responses involving interactions between dendritic cells and T cells, reduce the pro-inflammatory responses of epithelial cells, and reduce allergenic responses from basophils and mast cells <em>in vitro</em>. In addition, we highlight the current understanding of the alleviative effects of <em>Panax</em> species and their BCs against AA and AR <em>in vivo</em>. Moreover, we discuss the unmet needs of research and considerations for the treatment of patients to provide basic scientific knowledge for the treatment of AADs using <em>Panax</em> species and their BCs.</p></div>","PeriodicalId":16035,"journal":{"name":"Journal of Ginseng Research","volume":"48 4","pages":"Pages 354-365"},"PeriodicalIF":6.3,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1226845324000824/pdfft?md5=d090cd8faef66fbe31255e05236be1db&pid=1-s2.0-S1226845324000824-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140771746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Human disease-related long noncoding RNAs: Impact of ginsenosides 与人类疾病相关的长非编码 RNA:人参皂苷的影响
IF 6.3 2区 医学
Journal of Ginseng Research Pub Date : 2024-04-14 DOI: 10.1016/j.jgr.2024.04.002
Siyeon Jang , Hyeonjin Lee , Hyeon Woo Kim, Minjae Baek, Sanghyun Jung, Sun Jung Kim
{"title":"Human disease-related long noncoding RNAs: Impact of ginsenosides","authors":"Siyeon Jang ,&nbsp;Hyeonjin Lee ,&nbsp;Hyeon Woo Kim,&nbsp;Minjae Baek,&nbsp;Sanghyun Jung,&nbsp;Sun Jung Kim","doi":"10.1016/j.jgr.2024.04.002","DOIUrl":"10.1016/j.jgr.2024.04.002","url":null,"abstract":"<div><p>Ginsenosides in ginseng are known for their potential health benefits, including antioxidant properties and their potential to exhibit anticancer effects. Besides a various range of coding genes, ginsenosides impose their efficacy by targeting noncoding RNAs. Long noncoding RNA (</p><p>lncRNA) has gained significant attention from both basic and clinical oncology fields due to its involvement in various cancer cell activities such as proliferation, apoptosis, metastasis, and autophagy. These events can be achieved either by lncRNA alone or in association with microRNAs or proteins. This review aims to summarize the diverse activities of lncRNAs that are regulated by ginsenosides, focusing on their role in regulating target genes through signaling pathways in human diseases. We highlight the results of studies on the expression profiles of lncRNAs induced by ginsenosides in efforts to inhibit cancer cell proliferation. Finally, we discuss the potential and challenges of utilizing lncRNAs as diagnostic markers for disease treatment.</p></div>","PeriodicalId":16035,"journal":{"name":"Journal of Ginseng Research","volume":"48 4","pages":"Pages 347-353"},"PeriodicalIF":6.3,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1226845324000800/pdfft?md5=d927b6ff2df667d06454614691ee6792&pid=1-s2.0-S1226845324000800-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140625763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting the DNA damage response (DDR) of cancer cells with natural compounds derived from Panax ginseng and other plants 利用从三七和其他植物中提取的天然化合物靶向癌细胞的 DNA 损伤反应(DDR)
IF 6.3 2区 医学
Journal of Ginseng Research Pub Date : 2024-04-09 DOI: 10.1016/j.jgr.2024.04.001
SeokGyeong Choi, Minwook Shin, Woo-Young Kim
{"title":"Targeting the DNA damage response (DDR) of cancer cells with natural compounds derived from Panax ginseng and other plants","authors":"SeokGyeong Choi, Minwook Shin, Woo-Young Kim","doi":"10.1016/j.jgr.2024.04.001","DOIUrl":"https://doi.org/10.1016/j.jgr.2024.04.001","url":null,"abstract":"DNA damage is a driver of cancer formation, leading to the impairment of repair mechanisms in cancer cells and rendering them susceptible to DNA-damaging therapeutic approaches. The concept of “synthetic lethality” in cancer clinics has emerged, particularly with the use of PARP inhibitors and the identification of DNA damage response (DDR) mutation biomarkers, emphasizing the significance of targeting DDR in cancer therapy. Novel approaches aimed at genome maintenance machinery are under development to further enhance the efficacy of cancer treatments. Natural compounds from traditional medicine, renowned for their anti-aging and anticarcinogenic properties, have garnered attention. Ginseng-derived compounds, in particular, exhibit anti-carcinogenic effects by suppressing reactive oxygen species (ROS) and protecting cells from DNA damage-induced carcinogenesis. However, the anticancer therapeutic effect of ginseng compounds has also been demonstrated by inducing DNA damage and blocking DDR. This review concentrates on the biphasic effects of ginseng compounds on DNA mutations—both inhibiting mutation accumulation and impairing DNA repair. Additionally, it explores other natural compounds targeting DDR directly, providing potential insights into enhancing cancer therapy efficacy.","PeriodicalId":16035,"journal":{"name":"Journal of Ginseng Research","volume":"9 1","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140625759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信