Journal of Hydrometeorology最新文献

筛选
英文 中文
Integrating LEO and GEO Observations: Toward Optimal Summertime Satellite Precipitation Retrieval 综合LEO和GEO观测:面向最佳夏季卫星降水反演
3区 地球科学
Journal of Hydrometeorology Pub Date : 2023-11-01 DOI: 10.1175/jhm-d-23-0006.1
Vesta Afzali Gorooh, Veljko Petković, Malarvizhi Arulraj, Phu Nguyen, Kuo-lin Hsu, Soroosh Sorooshian, Ralph R. Ferraro
{"title":"Integrating LEO and GEO Observations: Toward Optimal Summertime Satellite Precipitation Retrieval","authors":"Vesta Afzali Gorooh, Veljko Petković, Malarvizhi Arulraj, Phu Nguyen, Kuo-lin Hsu, Soroosh Sorooshian, Ralph R. Ferraro","doi":"10.1175/jhm-d-23-0006.1","DOIUrl":"https://doi.org/10.1175/jhm-d-23-0006.1","url":null,"abstract":"Abstract Reliable quantitative precipitation estimation with a rich spatiotemporal resolution is vital for understanding the Earth’s hydrological cycle. Precipitation estimation over land and coastal regions is necessary for addressing the high degree of spatial heterogeneity of water availability and demand, and for resolving the extremes that modulate and amplify hazards such as flooding and landslides. Advancements in computation power along with unique high spatiotemporal and spectral resolution data streams from passive meteorological sensors aboard geosynchronous Earth-orbiting (GEO) and low Earth-orbiting (LEO) satellites offer exciting opportunities to retrieve information about surface precipitation phenomena using data-driven machine learning techniques. In this study, the capabilities of U-Net–like architecture are investigated to map instantaneous, summertime surface precipitation intensity at the spatial resolution of 2 km. The calibrated brightness temperature products from the Global Precipitation Measurement (GPM) Microwave Imager (GMI) radiometer are combined with multispectral images (visible, near-infrared, and infrared bands) from the Advanced Baseline Imager (ABI) aboard the GOES-R satellites as main inputs to the U-Net–like precipitation algorithm. Total precipitable water and 2-m temperature from the Global Forecast System (GFS) model are also used as auxiliary inputs to the model. The results show that the U-Net–like algorithm can capture fine-scale patterns and intensity of surface precipitation at high spatial resolution over stratiform and convective precipitation regimes. The evaluations reveal the potential of extracting relevant, high spatial features over complex surface types such as mountainous regions and coastlines. The algorithm allows users to interpret the inputs’ importance and can serve as a starting point for further exploration of precipitation systems within the field of hydrometeorology.","PeriodicalId":15962,"journal":{"name":"Journal of Hydrometeorology","volume":"35 5","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135111210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LSTM-based data integration to improve snow water equivalent prediction and diagnose error sources 基于lstm的数据集成改进雪水当量预报和诊断误差源
3区 地球科学
Journal of Hydrometeorology Pub Date : 2023-10-30 DOI: 10.1175/jhm-d-22-0220.1
Yalan Song, Wen-Ping Tsai, Jonah Gluck, Alan Rhoades, Colin Zarzycki, Rachel McCrary, Kathryn Lawson, Chaopeng Shen
{"title":"LSTM-based data integration to improve snow water equivalent prediction and diagnose error sources","authors":"Yalan Song, Wen-Ping Tsai, Jonah Gluck, Alan Rhoades, Colin Zarzycki, Rachel McCrary, Kathryn Lawson, Chaopeng Shen","doi":"10.1175/jhm-d-22-0220.1","DOIUrl":"https://doi.org/10.1175/jhm-d-22-0220.1","url":null,"abstract":"Abstract Accurate prediction of snow water equivalent (SWE) can be valuable for water resource managers. Recently, deep learning methods such as long short-term memory (LSTM) have exhibited high accuracy in simulating hydrologic variables and can integrate lagged observations to improve prediction, but their benefits were not clear for SWE simulations. Here we tested an LSTM network with data integration (DI) for SWE in the western US to integrate 30-day-lagged or 7-day-lagged observations of either SWE or satellite-observed snow cover fraction (SCF) to improve future predictions. SCF proved beneficial only for shallow-snow sites during snowmelt, while lagged SWE integration significantly improved prediction accuracy for both shallow-and deep-snow sites. The median Nash-Sutcliffe model efficiency coefficient (NSE) in temporal testing improved from 0.92 to 0.97 with 30-day-lagged SWE integration, and root-mean-square error (RMSE) and the difference between estimated and observed peak SWE values ( d max ) were reduced by 41% and 57%, respectively. DI effectively mitigated accumulated model and forcing errors which would otherwise be persistent. Moreover, by applying DI to different observations (30-day-lagged, 7-day-lagged), we revealed the spatial distribution of errors with different persistent lengths. For example, integrating 30-day-lagged SWE was ineffective for ephemeral snow sites in the southwestern US, but significantly reduced monthly-scale biases for regions with stable seasonal snowpack such as high elevation sites in California. These biases are likely attributable to large interannual variability in snowfall or site-specific snow redistribution patterns that can accumulate to impactful levels over time for non-ephemeral sites. These results set up benchmark levels and provide guidance for future model improvement strategies.","PeriodicalId":15962,"journal":{"name":"Journal of Hydrometeorology","volume":"31 6","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136068385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cold-Season Precipitation Sensitivity to Microphysical Parameterizations: Hydrologic Evaluations Leveraging Snow Lidar Datasets 冷季降水对微物理参数化的敏感性:利用雪激光雷达数据集的水文评估
3区 地球科学
Journal of Hydrometeorology Pub Date : 2023-10-30 DOI: 10.1175/jhm-d-22-0217.1
W.J. Rudisill, A.N. Flores, H.P. Marshall, E. Siirila-Woodburn, D.R. Feldman, A.M. Rhoades, Z. Xu, A. Morales
{"title":"Cold-Season Precipitation Sensitivity to Microphysical Parameterizations: Hydrologic Evaluations Leveraging Snow Lidar Datasets","authors":"W.J. Rudisill, A.N. Flores, H.P. Marshall, E. Siirila-Woodburn, D.R. Feldman, A.M. Rhoades, Z. Xu, A. Morales","doi":"10.1175/jhm-d-22-0217.1","DOIUrl":"https://doi.org/10.1175/jhm-d-22-0217.1","url":null,"abstract":"Abstract Cloud microphysical processes are an important facet of atmospheric modeling, as they can control the initiation and rates of snowfall. Thus, parameterizations of these processes have important implications for modeling seasonal snow accumulation. We conduct experiments with the Weather Research and Forecasting (WRF V4.3.3) model using three different microphysics parameterizations, including a sophisticated new scheme (ISHMAEL). Simulations are conducted for two cold-seasons (2018 and 2019) centered on the Colorado Rockies’ ∼750 km 2 East River Watershed. Precipitation efficiencies are quantified using a drying-ratio mass budget approach and point evaluations are performed against three NRCS SNOTEL stations. Precipitation and meteorological outputs from each are used to force a land-surface model (Noah-MP) so that peak snow accumulation can be compared against airborne snow lidar products. We find that microphysical parameterization choice alone has a modest impact on total precipitation on the order of ± 3% watershed-wide, and as high as 15% for certain regions, similar to other studies comparing the same parameterizations. Precipitation biases evaluated against SNOTEL are 15 ± 13%. WRF Noah-MP configurations produced snow water equivalents with good correlations with airborne lidar products at a 1-km spatial resolution: Pearson’s r values of 0.9, RMSEs between 8-17 cm and percent-biases of 3-15%. Noah-MP with precipitation from the PRISM geostatistical precipitation product leads to a peak SWE underestimation of 32% in both years examined, and a weaker spatial correlation than the WRF configurations. We fall short of identifying a clearly superior microphysical parameterization, but conclude that snow lidar is a valuable non-traditional indicator of model performance.","PeriodicalId":15962,"journal":{"name":"Journal of Hydrometeorology","volume":"97 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136067932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Population Exposure to Compound Precipitation-Temperature Extremes in the Past and Future Climate across India 印度过去和未来气候中人口对复合降水-温度极端的暴露
3区 地球科学
Journal of Hydrometeorology Pub Date : 2023-10-27 DOI: 10.1175/jhm-d-22-0238.1
Subhasmita Dash, Rajib Maity, Harald Kunstmann
{"title":"Population Exposure to Compound Precipitation-Temperature Extremes in the Past and Future Climate across India","authors":"Subhasmita Dash, Rajib Maity, Harald Kunstmann","doi":"10.1175/jhm-d-22-0238.1","DOIUrl":"https://doi.org/10.1175/jhm-d-22-0238.1","url":null,"abstract":"Abstract This study explores the population exposure to an increasing number of hydroclimatic extreme events owing to the warming climate. It is well-agreed that the extreme events are increasing in terms of frequency as well as intensity due to climate change and that the exposure to compound extreme events (concurrent occurrence of two or more extreme phenomena) affects population, ecosystems, and a variety of socioeconomic aspects more adversely. Specifically, the compound precipitation-temperature extremes (hot-dry and hot-wet) are considered, and the entire Indian mainland is regarded as the study region that spans over a wide variety of climatic regimes and wide variation of population density. The developed copula-based statistical method evaluates the change in population exposure to the compound extremes across the past (1981-2020) and future (near future: 2021-2060 and far future: 2061-2100) due to climate change. The results indicate an increase of more than 10 million person-year exposure from the compound extremes across many regions of the country, considering both near and far future periods. Densely populated regions have experienced more significant changes in hot-wet extremes as compared to the hot-dry extremes in the past, and the same is projected to continue in the future. The increase is as much as six-fold in many parts of the country, including Indo-Gangetic plains and southern-most coastal regions, identified as the future hotspots with the maximum increase in exposure under all the projected warming and population scenarios. The study helps to identify the regions that may need greater attention based on the risks of population exposure to compound extremes in a warmer future.","PeriodicalId":15962,"journal":{"name":"Journal of Hydrometeorology","volume":"138 1-2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136316476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of adjusted and non-adjusted surface observations on the cold season performance of the Canadian Precipitation Analysis (CaPA) System 调整和非调整的地面观测对加拿大降水分析系统(CaPA)冷季性能的影响
3区 地球科学
Journal of Hydrometeorology Pub Date : 2023-10-27 DOI: 10.1175/jhm-d-23-0070.1
Pei-Ning Feng, Stéphane Bélair, Dikraa Khedhaouiria, Franck Lespinas, Eva Mekis, Julie M. Thériault
{"title":"Impact of adjusted and non-adjusted surface observations on the cold season performance of the Canadian Precipitation Analysis (CaPA) System","authors":"Pei-Ning Feng, Stéphane Bélair, Dikraa Khedhaouiria, Franck Lespinas, Eva Mekis, Julie M. Thériault","doi":"10.1175/jhm-d-23-0070.1","DOIUrl":"https://doi.org/10.1175/jhm-d-23-0070.1","url":null,"abstract":"Abstract The Canadian Precipitation Analysis System (CaPA) is an operational system that uses a combination of weather gauge and ground-based radar measurements together with short-term forecasts from a numerical weather model to provide near-real-time estimates of 6 and 24-hour precipitation amounts. During the winter season, many gauge measurements are rejected by the CaPA quality control process due to the wind-induced undercatch for solid precipitation. The goal of this study is to improve the precipitation estimates over central Canada during the winter seasons from 2019 to 2022. Two approaches were tested. First, the quality control procedure in CaPA has been relaxed to increase the number of surface observations assimilated. Second, the automatic solid precipitation measurements were adjusted using a universal transfer function to compensate for the undercatch problem. Although increasing the wind speed threshold resulted in lower amounts and worse biases in frequency, the overall precipitation estimates is improved as the equitable threat score is improved due to a substantial decrease in the false alarm ratio, which compensates the degradation of the probability of detection. The increase of solid precipitation amounts using a transfer function improves the biases in both frequency and amounts, and the probability of detection for all precipitation thresholds. However, the false alarm ratio deteriorates for large thresholds. The statistics varies from year to year, but an overall improvement is demonstrated by increasing the number of stations and adjusting the solid precipitation amounts for wind speed undercatch.","PeriodicalId":15962,"journal":{"name":"Journal of Hydrometeorology","volume":"15 8","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136263738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global Snow Seasonality Regimes from Satellite Records of Snow Cover 从积雪覆盖的卫星记录看全球积雪的季节特征
3区 地球科学
Journal of Hydrometeorology Pub Date : 2023-10-23 DOI: 10.1175/jhm-d-23-0047.1
Jeremy Johnston, Jennifer M. Jacobs, Eunsang Cho
{"title":"Global Snow Seasonality Regimes from Satellite Records of Snow Cover","authors":"Jeremy Johnston, Jennifer M. Jacobs, Eunsang Cho","doi":"10.1175/jhm-d-23-0047.1","DOIUrl":"https://doi.org/10.1175/jhm-d-23-0047.1","url":null,"abstract":"Abstract Snow cover provides distinct seasonal controls on the exchange of energy between the Earth’s surface and atmosphere, hydrologic cycling, and holds considerable importance to communities and ecosystems worldwide. In this work, we tackle a comprehensive review of existing snow classification approaches and the development of new globally applicable snow cover-based rules for delineating snow seasonality classes. Snow classification rules are defined using machine learning approaches, which are then applied to the 22-year record of snow cover (2000-2022) from the Moderate Resolution Imaging Spectroradiometer (MODIS) on a 0.01° global grid. For the MODIS period of record, we find the global land surface can be effectively partitioned into five snow seasonality classes: no snow, ephemeral, transitional, seasonal, and perennial snow regimes which on average cover extents of approximately 76 (52% of global land areas), 19 (13%), 16 (11%), 18 (13%), and 16 million km 2 (11%), respectively. Using the multi-decadal dataset, we explore changes within snow regimes and find significant increases in the areal extent of no snow (approximately +70,000 km 2 /year) as well as apparent losses in perennial (‒3,600 km 2 /year) and seasonal snow regime coverage (‒38,000 km 2 /year). The resulting classification maps have strong agreement with in-situ snow depth observations and present similar patterns to existing snow and climate classifications with notable discrepancies in cold arid regions. The framework's ability to accurately capture variations in snow persistence, snow accumulation, and melt cycling is shown, providing a reference to the current state of global snow seasonality.","PeriodicalId":15962,"journal":{"name":"Journal of Hydrometeorology","volume":"15 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135412956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Systematic modelling errors undermine the application of land data assimilation systems for hydrological and weather forecasting 系统模拟误差破坏了土地数据同化系统在水文和天气预报中的应用
3区 地球科学
Journal of Hydrometeorology Pub Date : 2023-10-20 DOI: 10.1175/jhm-d-23-0069.1
Wade T. Crow, Hyunglok Kim, Sujay Kumar
{"title":"Systematic modelling errors undermine the application of land data assimilation systems for hydrological and weather forecasting","authors":"Wade T. Crow, Hyunglok Kim, Sujay Kumar","doi":"10.1175/jhm-d-23-0069.1","DOIUrl":"https://doi.org/10.1175/jhm-d-23-0069.1","url":null,"abstract":"Abstract Due to recent advances in the development of land data assimilation systems (LDAS) and the availability of high-quality, satellite-based surface soil moisture (SSM) retrieval products, we now have unambiguous evidence that the assimilation of SSM retrievals, or their proxy, can improve the precision (i.e., correlation versus truth) of surface state estimates provided by a land surface model (LSM). However, this clarity does not yet extend to the estimation of LSM surface water fluxes that are key to hydrologic and numerical weather forecasting applications. Here, we hypothesize that a key obstacle to extrapolating realized improvements in water state precision into comparable improvements in water flux accuracy (i.e., mean absolute error) is the presence of water-state/water-flux coupling strength biases existing in LSMs. To test this hypothesis, we conduct a series of synthetic fraternal twin data assimilation experiments where realistic levels of state/flux coupling strength bias - involving both evapotranspiration and runoff - are systematically introduced into an assimilation LSM. Results show that the accuracy of the resulting water flux analysis is sharply reduced by the presence of such bias – even in cases where the precision of soil moisture state estimates (e.g., SSM) is improved. The re-scaling of SSM observations prior to their assimilation (i.e., the most common approach for addressing systematic differences between LSMs and assimilated observations) is not always a robust strategy for addressing these errors and can, in certain circumstances, degrade water flux accuracy. Overall, results underscore the critical need to assess, and correct for, LSM water-state/water-flux coupling strength biases during the operation of an LDAS.","PeriodicalId":15962,"journal":{"name":"Journal of Hydrometeorology","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135617023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of GPM DPR rain parameters with north Taiwan disdrometers GPM DPR降雨参数在台湾北部地区的评估
3区 地球科学
Journal of Hydrometeorology Pub Date : 2023-10-11 DOI: 10.1175/jhm-d-23-0027.1
Seela Balaji Kumar, Jayalakshmi Janapati, Pay-Liam Lin, Chen-Hau Lan, Mu-Qun Huang
{"title":"Evaluation of GPM DPR rain parameters with north Taiwan disdrometers","authors":"Seela Balaji Kumar, Jayalakshmi Janapati, Pay-Liam Lin, Chen-Hau Lan, Mu-Qun Huang","doi":"10.1175/jhm-d-23-0027.1","DOIUrl":"https://doi.org/10.1175/jhm-d-23-0027.1","url":null,"abstract":"Abstract Global precipitation demonstrates a substantial role in the hydrological cycle and offers tremendous implications in hydro-meteorological studies. Advanced remote sensing instrumentations, such as the NASA Global Precipitation Measurement mission (GPM) Dual-Frequency Precipitation Radar (DPR) can estimate precipitation and cloud properties, and has a unique capability to estimate the raindrop size information globally at snapshots in time. The present study validates the Level-2 data products of the GPM DPR with the long-term measurements of seven north Taiwan Joss-Waldvogel disdrometers from 2014 to 2021. The precipitation and drop size distribution parameters like rainfall rate ( R , mm h −1 ), radar reflectivity factor (dBZ), mass-weighted mean drop diameter ( D m , mm), and normalized intercept parameter ( N w , m −3 mm −1 ) of the GPM DPR are compared with the disdrometers. Four different comparison approaches (point match, 5 km average, 10 km average, and optimal method) are used for the validation; among these four, the optimal strategy provided reasonable agreement between the GPM DPR and the disdrometers. The GPM DPR revealed superior performance in estimating the rain parameters in stratiform precipitation than the convective precipitation. Irrespective of algorithm type (dual- or single-frequency algorithm), sensitivity analysis revealed superior agreement for the mass-weighted mean diameter and inferior agreement for the normalized intercept parameter.","PeriodicalId":15962,"journal":{"name":"Journal of Hydrometeorology","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136098479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-product characterization of surface soil moisture drydowns in the UK 多产品表征的表层土壤水分干燥在英国
3区 地球科学
Journal of Hydrometeorology Pub Date : 2023-10-09 DOI: 10.1175/jhm-d-23-0018.1
Chak-Hau Michael Tso, Eleanor Blyth, Maliko Tanguy, Peter E. Levy, Emma L. Robinson, Victoria Bell, Yuanyuan Zha, Matthew Fry
{"title":"Multi-product characterization of surface soil moisture drydowns in the UK","authors":"Chak-Hau Michael Tso, Eleanor Blyth, Maliko Tanguy, Peter E. Levy, Emma L. Robinson, Victoria Bell, Yuanyuan Zha, Matthew Fry","doi":"10.1175/jhm-d-23-0018.1","DOIUrl":"https://doi.org/10.1175/jhm-d-23-0018.1","url":null,"abstract":"Abstract The persistence or memory of soil moisture (θ) after rainfall has substantial environmental implications. Much work has been done to study soil moisture drydown for in-situ and satellite data separately. In this work, we present a comparison of drydown characteristics across multiple UK soil moisture products, including satellite-merged (i.e. TCM), in-situ (i.e. COSMOS-UK), hydrological model (i.e. G2G), statistical model (i.e. SMUK) and land surface model (LSM) (i.e. CHESS) data. The drydown decay time scale (τ) for all gridded products are computed at an unprecedented resolution of 1-2 km, a scale relevant to weather and climate models. While their range of τ differ (except SMUK and CHESS are similar) due to differences such as sensing depths, their spatial patterns are correlated to land cover and soil types. We further analyse the occurrence of drydown events at COSMOS-UK sites. We show that soil moisture drydown regimes exhibit strong seasonal dependencies, whereby the soil dries out quicker in summer than winter. These seasonal dependencies are important to consider during model benchmarking and evaluation. We show that fitted τ based on COSMOS and LSM are well correlated, with a bias of lower τ for COSMOS. Our findings contribute to a growing body of literature to characterize τ, with the aim of developing a method to systematically validate model soil moisture products at a range of scales.","PeriodicalId":15962,"journal":{"name":"Journal of Hydrometeorology","volume":"63 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135141803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Traditional and Novel Methods of Rainfall Observation and Measurement: A Review 雨量观测和测量的传统方法和新方法:综述
IF 3.8 3区 地球科学
Journal of Hydrometeorology Pub Date : 2023-10-04 DOI: 10.1175/jhm-d-22-0122.1
Xing Wang, Shuaiyi Shi, Litao Zhu, Yunfeng Nie, Guojun Lai
{"title":"Traditional and Novel Methods of Rainfall Observation and Measurement: A Review","authors":"Xing Wang, Shuaiyi Shi, Litao Zhu, Yunfeng Nie, Guojun Lai","doi":"10.1175/jhm-d-22-0122.1","DOIUrl":"https://doi.org/10.1175/jhm-d-22-0122.1","url":null,"abstract":"Due to its high spatial and temporal variability, rainfall remains one of the most challenging meteorological variables to measure accurately. Obtaining high-quality rainfall products is essential for flood monitoring, disaster warning, and weather forecasting systems, but this is not always possible on the basis of current rainfall observation networks. Innovative alternatives draw inspiration from “citizen science” and “crowd-sourcing,” allowing for opportunistic sensing of rainfall from existing measurements at a low cost, which has become a popular topic and is beginning to play an important role in developing rainfall observation systems. This paper reviews the current state of new rainfall observation approaches and explores their opportunities to complement more traditional ways of rainfall data collection in a hydrological context. Furthermore, the challenges of each new approach are discussed. Although these new options show great potential in enhancing the current rainfall network, they still face problems in terms of their accuracy, real-time accessibility, and limited applicability when individually employed. In contrast, the fusion of new measurements with traditional observation networks is feasible and will be effective for regional rainfall monitoring. This study also serves as an important reference in developing monitoring techniques for other environmental factors.","PeriodicalId":15962,"journal":{"name":"Journal of Hydrometeorology","volume":"2 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139323771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信