Xing Wang, Shuaiyi Shi, Litao Zhu, Yunfeng Nie, Guojun Lai
{"title":"Traditional and Novel Methods of Rainfall Observation and Measurement: A Review","authors":"Xing Wang, Shuaiyi Shi, Litao Zhu, Yunfeng Nie, Guojun Lai","doi":"10.1175/jhm-d-22-0122.1","DOIUrl":null,"url":null,"abstract":"Due to its high spatial and temporal variability, rainfall remains one of the most challenging meteorological variables to measure accurately. Obtaining high-quality rainfall products is essential for flood monitoring, disaster warning, and weather forecasting systems, but this is not always possible on the basis of current rainfall observation networks. Innovative alternatives draw inspiration from “citizen science” and “crowd-sourcing,” allowing for opportunistic sensing of rainfall from existing measurements at a low cost, which has become a popular topic and is beginning to play an important role in developing rainfall observation systems. This paper reviews the current state of new rainfall observation approaches and explores their opportunities to complement more traditional ways of rainfall data collection in a hydrological context. Furthermore, the challenges of each new approach are discussed. Although these new options show great potential in enhancing the current rainfall network, they still face problems in terms of their accuracy, real-time accessibility, and limited applicability when individually employed. In contrast, the fusion of new measurements with traditional observation networks is feasible and will be effective for regional rainfall monitoring. This study also serves as an important reference in developing monitoring techniques for other environmental factors.","PeriodicalId":15962,"journal":{"name":"Journal of Hydrometeorology","volume":"2 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrometeorology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jhm-d-22-0122.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Due to its high spatial and temporal variability, rainfall remains one of the most challenging meteorological variables to measure accurately. Obtaining high-quality rainfall products is essential for flood monitoring, disaster warning, and weather forecasting systems, but this is not always possible on the basis of current rainfall observation networks. Innovative alternatives draw inspiration from “citizen science” and “crowd-sourcing,” allowing for opportunistic sensing of rainfall from existing measurements at a low cost, which has become a popular topic and is beginning to play an important role in developing rainfall observation systems. This paper reviews the current state of new rainfall observation approaches and explores their opportunities to complement more traditional ways of rainfall data collection in a hydrological context. Furthermore, the challenges of each new approach are discussed. Although these new options show great potential in enhancing the current rainfall network, they still face problems in terms of their accuracy, real-time accessibility, and limited applicability when individually employed. In contrast, the fusion of new measurements with traditional observation networks is feasible and will be effective for regional rainfall monitoring. This study also serves as an important reference in developing monitoring techniques for other environmental factors.
期刊介绍:
The Journal of Hydrometeorology (JHM) (ISSN: 1525-755X; eISSN: 1525-7541) publishes research on modeling, observing, and forecasting processes related to fluxes and storage of water and energy, including interactions with the boundary layer and lower atmosphere, and processes related to precipitation, radiation, and other meteorological inputs.