Yalan Song, Wen-Ping Tsai, Jonah Gluck, Alan Rhoades, Colin Zarzycki, Rachel McCrary, Kathryn Lawson, Chaopeng Shen
{"title":"基于lstm的数据集成改进雪水当量预报和诊断误差源","authors":"Yalan Song, Wen-Ping Tsai, Jonah Gluck, Alan Rhoades, Colin Zarzycki, Rachel McCrary, Kathryn Lawson, Chaopeng Shen","doi":"10.1175/jhm-d-22-0220.1","DOIUrl":null,"url":null,"abstract":"Abstract Accurate prediction of snow water equivalent (SWE) can be valuable for water resource managers. Recently, deep learning methods such as long short-term memory (LSTM) have exhibited high accuracy in simulating hydrologic variables and can integrate lagged observations to improve prediction, but their benefits were not clear for SWE simulations. Here we tested an LSTM network with data integration (DI) for SWE in the western US to integrate 30-day-lagged or 7-day-lagged observations of either SWE or satellite-observed snow cover fraction (SCF) to improve future predictions. SCF proved beneficial only for shallow-snow sites during snowmelt, while lagged SWE integration significantly improved prediction accuracy for both shallow-and deep-snow sites. The median Nash-Sutcliffe model efficiency coefficient (NSE) in temporal testing improved from 0.92 to 0.97 with 30-day-lagged SWE integration, and root-mean-square error (RMSE) and the difference between estimated and observed peak SWE values ( d max ) were reduced by 41% and 57%, respectively. DI effectively mitigated accumulated model and forcing errors which would otherwise be persistent. Moreover, by applying DI to different observations (30-day-lagged, 7-day-lagged), we revealed the spatial distribution of errors with different persistent lengths. For example, integrating 30-day-lagged SWE was ineffective for ephemeral snow sites in the southwestern US, but significantly reduced monthly-scale biases for regions with stable seasonal snowpack such as high elevation sites in California. These biases are likely attributable to large interannual variability in snowfall or site-specific snow redistribution patterns that can accumulate to impactful levels over time for non-ephemeral sites. These results set up benchmark levels and provide guidance for future model improvement strategies.","PeriodicalId":15962,"journal":{"name":"Journal of Hydrometeorology","volume":"31 6","pages":"0"},"PeriodicalIF":3.1000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LSTM-based data integration to improve snow water equivalent prediction and diagnose error sources\",\"authors\":\"Yalan Song, Wen-Ping Tsai, Jonah Gluck, Alan Rhoades, Colin Zarzycki, Rachel McCrary, Kathryn Lawson, Chaopeng Shen\",\"doi\":\"10.1175/jhm-d-22-0220.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Accurate prediction of snow water equivalent (SWE) can be valuable for water resource managers. Recently, deep learning methods such as long short-term memory (LSTM) have exhibited high accuracy in simulating hydrologic variables and can integrate lagged observations to improve prediction, but their benefits were not clear for SWE simulations. Here we tested an LSTM network with data integration (DI) for SWE in the western US to integrate 30-day-lagged or 7-day-lagged observations of either SWE or satellite-observed snow cover fraction (SCF) to improve future predictions. SCF proved beneficial only for shallow-snow sites during snowmelt, while lagged SWE integration significantly improved prediction accuracy for both shallow-and deep-snow sites. The median Nash-Sutcliffe model efficiency coefficient (NSE) in temporal testing improved from 0.92 to 0.97 with 30-day-lagged SWE integration, and root-mean-square error (RMSE) and the difference between estimated and observed peak SWE values ( d max ) were reduced by 41% and 57%, respectively. DI effectively mitigated accumulated model and forcing errors which would otherwise be persistent. Moreover, by applying DI to different observations (30-day-lagged, 7-day-lagged), we revealed the spatial distribution of errors with different persistent lengths. For example, integrating 30-day-lagged SWE was ineffective for ephemeral snow sites in the southwestern US, but significantly reduced monthly-scale biases for regions with stable seasonal snowpack such as high elevation sites in California. These biases are likely attributable to large interannual variability in snowfall or site-specific snow redistribution patterns that can accumulate to impactful levels over time for non-ephemeral sites. These results set up benchmark levels and provide guidance for future model improvement strategies.\",\"PeriodicalId\":15962,\"journal\":{\"name\":\"Journal of Hydrometeorology\",\"volume\":\"31 6\",\"pages\":\"0\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrometeorology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1175/jhm-d-22-0220.1\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrometeorology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/jhm-d-22-0220.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
LSTM-based data integration to improve snow water equivalent prediction and diagnose error sources
Abstract Accurate prediction of snow water equivalent (SWE) can be valuable for water resource managers. Recently, deep learning methods such as long short-term memory (LSTM) have exhibited high accuracy in simulating hydrologic variables and can integrate lagged observations to improve prediction, but their benefits were not clear for SWE simulations. Here we tested an LSTM network with data integration (DI) for SWE in the western US to integrate 30-day-lagged or 7-day-lagged observations of either SWE or satellite-observed snow cover fraction (SCF) to improve future predictions. SCF proved beneficial only for shallow-snow sites during snowmelt, while lagged SWE integration significantly improved prediction accuracy for both shallow-and deep-snow sites. The median Nash-Sutcliffe model efficiency coefficient (NSE) in temporal testing improved from 0.92 to 0.97 with 30-day-lagged SWE integration, and root-mean-square error (RMSE) and the difference between estimated and observed peak SWE values ( d max ) were reduced by 41% and 57%, respectively. DI effectively mitigated accumulated model and forcing errors which would otherwise be persistent. Moreover, by applying DI to different observations (30-day-lagged, 7-day-lagged), we revealed the spatial distribution of errors with different persistent lengths. For example, integrating 30-day-lagged SWE was ineffective for ephemeral snow sites in the southwestern US, but significantly reduced monthly-scale biases for regions with stable seasonal snowpack such as high elevation sites in California. These biases are likely attributable to large interannual variability in snowfall or site-specific snow redistribution patterns that can accumulate to impactful levels over time for non-ephemeral sites. These results set up benchmark levels and provide guidance for future model improvement strategies.
期刊介绍:
The Journal of Hydrometeorology (JHM) (ISSN: 1525-755X; eISSN: 1525-7541) publishes research on modeling, observing, and forecasting processes related to fluxes and storage of water and energy, including interactions with the boundary layer and lower atmosphere, and processes related to precipitation, radiation, and other meteorological inputs.