W.J. Rudisill, A.N. Flores, H.P. Marshall, E. Siirila-Woodburn, D.R. Feldman, A.M. Rhoades, Z. Xu, A. Morales
{"title":"冷季降水对微物理参数化的敏感性:利用雪激光雷达数据集的水文评估","authors":"W.J. Rudisill, A.N. Flores, H.P. Marshall, E. Siirila-Woodburn, D.R. Feldman, A.M. Rhoades, Z. Xu, A. Morales","doi":"10.1175/jhm-d-22-0217.1","DOIUrl":null,"url":null,"abstract":"Abstract Cloud microphysical processes are an important facet of atmospheric modeling, as they can control the initiation and rates of snowfall. Thus, parameterizations of these processes have important implications for modeling seasonal snow accumulation. We conduct experiments with the Weather Research and Forecasting (WRF V4.3.3) model using three different microphysics parameterizations, including a sophisticated new scheme (ISHMAEL). Simulations are conducted for two cold-seasons (2018 and 2019) centered on the Colorado Rockies’ ∼750 km 2 East River Watershed. Precipitation efficiencies are quantified using a drying-ratio mass budget approach and point evaluations are performed against three NRCS SNOTEL stations. Precipitation and meteorological outputs from each are used to force a land-surface model (Noah-MP) so that peak snow accumulation can be compared against airborne snow lidar products. We find that microphysical parameterization choice alone has a modest impact on total precipitation on the order of ± 3% watershed-wide, and as high as 15% for certain regions, similar to other studies comparing the same parameterizations. Precipitation biases evaluated against SNOTEL are 15 ± 13%. WRF Noah-MP configurations produced snow water equivalents with good correlations with airborne lidar products at a 1-km spatial resolution: Pearson’s r values of 0.9, RMSEs between 8-17 cm and percent-biases of 3-15%. Noah-MP with precipitation from the PRISM geostatistical precipitation product leads to a peak SWE underestimation of 32% in both years examined, and a weaker spatial correlation than the WRF configurations. We fall short of identifying a clearly superior microphysical parameterization, but conclude that snow lidar is a valuable non-traditional indicator of model performance.","PeriodicalId":15962,"journal":{"name":"Journal of Hydrometeorology","volume":"97 1","pages":"0"},"PeriodicalIF":3.1000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cold-Season Precipitation Sensitivity to Microphysical Parameterizations: Hydrologic Evaluations Leveraging Snow Lidar Datasets\",\"authors\":\"W.J. Rudisill, A.N. Flores, H.P. Marshall, E. Siirila-Woodburn, D.R. Feldman, A.M. Rhoades, Z. Xu, A. Morales\",\"doi\":\"10.1175/jhm-d-22-0217.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Cloud microphysical processes are an important facet of atmospheric modeling, as they can control the initiation and rates of snowfall. Thus, parameterizations of these processes have important implications for modeling seasonal snow accumulation. We conduct experiments with the Weather Research and Forecasting (WRF V4.3.3) model using three different microphysics parameterizations, including a sophisticated new scheme (ISHMAEL). Simulations are conducted for two cold-seasons (2018 and 2019) centered on the Colorado Rockies’ ∼750 km 2 East River Watershed. Precipitation efficiencies are quantified using a drying-ratio mass budget approach and point evaluations are performed against three NRCS SNOTEL stations. Precipitation and meteorological outputs from each are used to force a land-surface model (Noah-MP) so that peak snow accumulation can be compared against airborne snow lidar products. We find that microphysical parameterization choice alone has a modest impact on total precipitation on the order of ± 3% watershed-wide, and as high as 15% for certain regions, similar to other studies comparing the same parameterizations. Precipitation biases evaluated against SNOTEL are 15 ± 13%. WRF Noah-MP configurations produced snow water equivalents with good correlations with airborne lidar products at a 1-km spatial resolution: Pearson’s r values of 0.9, RMSEs between 8-17 cm and percent-biases of 3-15%. Noah-MP with precipitation from the PRISM geostatistical precipitation product leads to a peak SWE underestimation of 32% in both years examined, and a weaker spatial correlation than the WRF configurations. We fall short of identifying a clearly superior microphysical parameterization, but conclude that snow lidar is a valuable non-traditional indicator of model performance.\",\"PeriodicalId\":15962,\"journal\":{\"name\":\"Journal of Hydrometeorology\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrometeorology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1175/jhm-d-22-0217.1\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrometeorology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/jhm-d-22-0217.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Abstract Cloud microphysical processes are an important facet of atmospheric modeling, as they can control the initiation and rates of snowfall. Thus, parameterizations of these processes have important implications for modeling seasonal snow accumulation. We conduct experiments with the Weather Research and Forecasting (WRF V4.3.3) model using three different microphysics parameterizations, including a sophisticated new scheme (ISHMAEL). Simulations are conducted for two cold-seasons (2018 and 2019) centered on the Colorado Rockies’ ∼750 km 2 East River Watershed. Precipitation efficiencies are quantified using a drying-ratio mass budget approach and point evaluations are performed against three NRCS SNOTEL stations. Precipitation and meteorological outputs from each are used to force a land-surface model (Noah-MP) so that peak snow accumulation can be compared against airborne snow lidar products. We find that microphysical parameterization choice alone has a modest impact on total precipitation on the order of ± 3% watershed-wide, and as high as 15% for certain regions, similar to other studies comparing the same parameterizations. Precipitation biases evaluated against SNOTEL are 15 ± 13%. WRF Noah-MP configurations produced snow water equivalents with good correlations with airborne lidar products at a 1-km spatial resolution: Pearson’s r values of 0.9, RMSEs between 8-17 cm and percent-biases of 3-15%. Noah-MP with precipitation from the PRISM geostatistical precipitation product leads to a peak SWE underestimation of 32% in both years examined, and a weaker spatial correlation than the WRF configurations. We fall short of identifying a clearly superior microphysical parameterization, but conclude that snow lidar is a valuable non-traditional indicator of model performance.
期刊介绍:
The Journal of Hydrometeorology (JHM) (ISSN: 1525-755X; eISSN: 1525-7541) publishes research on modeling, observing, and forecasting processes related to fluxes and storage of water and energy, including interactions with the boundary layer and lower atmosphere, and processes related to precipitation, radiation, and other meteorological inputs.