Integrating LEO and GEO Observations: Toward Optimal Summertime Satellite Precipitation Retrieval

IF 3.1 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Vesta Afzali Gorooh, Veljko Petković, Malarvizhi Arulraj, Phu Nguyen, Kuo-lin Hsu, Soroosh Sorooshian, Ralph R. Ferraro
{"title":"Integrating LEO and GEO Observations: Toward Optimal Summertime Satellite Precipitation Retrieval","authors":"Vesta Afzali Gorooh, Veljko Petković, Malarvizhi Arulraj, Phu Nguyen, Kuo-lin Hsu, Soroosh Sorooshian, Ralph R. Ferraro","doi":"10.1175/jhm-d-23-0006.1","DOIUrl":null,"url":null,"abstract":"Abstract Reliable quantitative precipitation estimation with a rich spatiotemporal resolution is vital for understanding the Earth’s hydrological cycle. Precipitation estimation over land and coastal regions is necessary for addressing the high degree of spatial heterogeneity of water availability and demand, and for resolving the extremes that modulate and amplify hazards such as flooding and landslides. Advancements in computation power along with unique high spatiotemporal and spectral resolution data streams from passive meteorological sensors aboard geosynchronous Earth-orbiting (GEO) and low Earth-orbiting (LEO) satellites offer exciting opportunities to retrieve information about surface precipitation phenomena using data-driven machine learning techniques. In this study, the capabilities of U-Net–like architecture are investigated to map instantaneous, summertime surface precipitation intensity at the spatial resolution of 2 km. The calibrated brightness temperature products from the Global Precipitation Measurement (GPM) Microwave Imager (GMI) radiometer are combined with multispectral images (visible, near-infrared, and infrared bands) from the Advanced Baseline Imager (ABI) aboard the GOES-R satellites as main inputs to the U-Net–like precipitation algorithm. Total precipitable water and 2-m temperature from the Global Forecast System (GFS) model are also used as auxiliary inputs to the model. The results show that the U-Net–like algorithm can capture fine-scale patterns and intensity of surface precipitation at high spatial resolution over stratiform and convective precipitation regimes. The evaluations reveal the potential of extracting relevant, high spatial features over complex surface types such as mountainous regions and coastlines. The algorithm allows users to interpret the inputs’ importance and can serve as a starting point for further exploration of precipitation systems within the field of hydrometeorology.","PeriodicalId":15962,"journal":{"name":"Journal of Hydrometeorology","volume":"35 5","pages":"0"},"PeriodicalIF":3.1000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrometeorology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/jhm-d-23-0006.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Reliable quantitative precipitation estimation with a rich spatiotemporal resolution is vital for understanding the Earth’s hydrological cycle. Precipitation estimation over land and coastal regions is necessary for addressing the high degree of spatial heterogeneity of water availability and demand, and for resolving the extremes that modulate and amplify hazards such as flooding and landslides. Advancements in computation power along with unique high spatiotemporal and spectral resolution data streams from passive meteorological sensors aboard geosynchronous Earth-orbiting (GEO) and low Earth-orbiting (LEO) satellites offer exciting opportunities to retrieve information about surface precipitation phenomena using data-driven machine learning techniques. In this study, the capabilities of U-Net–like architecture are investigated to map instantaneous, summertime surface precipitation intensity at the spatial resolution of 2 km. The calibrated brightness temperature products from the Global Precipitation Measurement (GPM) Microwave Imager (GMI) radiometer are combined with multispectral images (visible, near-infrared, and infrared bands) from the Advanced Baseline Imager (ABI) aboard the GOES-R satellites as main inputs to the U-Net–like precipitation algorithm. Total precipitable water and 2-m temperature from the Global Forecast System (GFS) model are also used as auxiliary inputs to the model. The results show that the U-Net–like algorithm can capture fine-scale patterns and intensity of surface precipitation at high spatial resolution over stratiform and convective precipitation regimes. The evaluations reveal the potential of extracting relevant, high spatial features over complex surface types such as mountainous regions and coastlines. The algorithm allows users to interpret the inputs’ importance and can serve as a starting point for further exploration of precipitation systems within the field of hydrometeorology.
综合LEO和GEO观测:面向最佳夏季卫星降水反演
具有丰富时空分辨率的可靠降水定量估算对于了解地球水文循环至关重要。陆地和沿海地区的降水估算对于解决水资源供应和需求的高度空间异质性,以及解决调节和放大洪水和山体滑坡等灾害的极端情况是必要的。计算能力的进步以及来自地球同步地球轨道(GEO)和低地球轨道(LEO)卫星上的被动气象传感器的独特的高时空和光谱分辨率数据流,为使用数据驱动的机器学习技术检索有关地表降水现象的信息提供了令人兴奋的机会。在这项研究中,研究了类似u - net的架构在2公里空间分辨率下绘制瞬时夏季地表降水强度的能力。来自全球降水测量(GPM)微波成像仪(GMI)辐射计的校准亮度温度产品与来自GOES-R卫星上的高级基线成像仪(ABI)的多光谱图像(可见光、近红外和红外波段)相结合,作为u - net样降水算法的主要输入。来自全球预报系统(GFS)模式的总可降水量和2米温度也被用作该模式的辅助输入。结果表明,u - net算法可以在高空间分辨率下捕获层状降水和对流降水的精细尺度模式和强度。这些评价揭示了在山区和海岸线等复杂地表类型上提取相关的高空间特征的潜力。该算法允许用户解释输入的重要性,并可以作为进一步探索水文气象领域降水系统的起点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Hydrometeorology
Journal of Hydrometeorology 地学-气象与大气科学
CiteScore
7.40
自引率
5.30%
发文量
116
审稿时长
4-8 weeks
期刊介绍: The Journal of Hydrometeorology (JHM) (ISSN: 1525-755X; eISSN: 1525-7541) publishes research on modeling, observing, and forecasting processes related to fluxes and storage of water and energy, including interactions with the boundary layer and lower atmosphere, and processes related to precipitation, radiation, and other meteorological inputs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信