Journal of Immunology Research最新文献

筛选
英文 中文
Serum Proteomics of Experimental Malaria-Associated ARDS Reveals a Regulation of Acute-Phase Response Proteins. 实验性疟疾相关ARDS的血清蛋白质组学揭示了急性期反应蛋白的调控
IF 3.5 3区 医学
Journal of Immunology Research Pub Date : 2025-03-23 eCollection Date: 2025-01-01 DOI: 10.1155/jimr/5642957
Lívia Rosa-Fernandes, Verônica Feijoli Santiago, Yasmin da Silva-Santos, Tissiane Tarosso Lopes, Erika Paula Machado Peixoto, Stefani Aparecida Minchio Rodrigues, Claudio Romero Farias Marinho, Giuseppe Palmisano, Sabrina Epiphanio
{"title":"Serum Proteomics of Experimental Malaria-Associated ARDS Reveals a Regulation of Acute-Phase Response Proteins.","authors":"Lívia Rosa-Fernandes, Verônica Feijoli Santiago, Yasmin da Silva-Santos, Tissiane Tarosso Lopes, Erika Paula Machado Peixoto, Stefani Aparecida Minchio Rodrigues, Claudio Romero Farias Marinho, Giuseppe Palmisano, Sabrina Epiphanio","doi":"10.1155/jimr/5642957","DOIUrl":"10.1155/jimr/5642957","url":null,"abstract":"<p><p>Malaria is a parasitic infectious disease considered a public health problem. Acute respiratory distress syndrome (ARDS) is a complication in malaria-infected individuals with a high mortality rate (80% to 100%) and can occur before, during, or after antimalarial drug treatment. Although inflammation and epithelial/endothelial injury pathways have been determined through these studies, specific circulating malaria-associated ARDS markers have not yet been established. We applied a quantitative mass spectrometry (MS)-based proteomic approach to identify altered molecular pathways in a mouse model of malaria-associated ARDS. Acute-phase response (APR) proteins were regulated in the ARDS group, suggesting their potential involvement in the development of the syndrome. They may serve as biomarkers when analyzed alongside other proteins that require further investigation. Additionally, the regulation of APR proteins in the ARDS group provides valuable insights into the pathophysiology of ARDS, contributing to a better understanding of the syndrome.</p>","PeriodicalId":15952,"journal":{"name":"Journal of Immunology Research","volume":"2025 ","pages":"5642957"},"PeriodicalIF":3.5,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11955258/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143752933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of a Prognostic Signature Based on Tumor-Infiltrating B Lymphocyte mRNA in Head and Neck Squamous Cell Carcinoma. 基于肿瘤浸润性B淋巴细胞mRNA的头颈部鳞状细胞癌预后特征的鉴定。
IF 3.5 3区 医学
Journal of Immunology Research Pub Date : 2025-03-19 eCollection Date: 2025-01-01 DOI: 10.1155/jimr/9375885
Mingjun Zhang, Qi Sun, Yisong Yao, Xi Chen, Jiaxuan Li, Ting Yuan, Yakui Mou, Yumei Li, Xicheng Song
{"title":"Identification of a Prognostic Signature Based on Tumor-Infiltrating B Lymphocyte mRNA in Head and Neck Squamous Cell Carcinoma.","authors":"Mingjun Zhang, Qi Sun, Yisong Yao, Xi Chen, Jiaxuan Li, Ting Yuan, Yakui Mou, Yumei Li, Xicheng Song","doi":"10.1155/jimr/9375885","DOIUrl":"10.1155/jimr/9375885","url":null,"abstract":"<p><p><b>Introduction:</b> Tumor-infiltrating B cells (TILBs) are an important part of the immune response during tumor regulation. However, the significance of B cells in immunotherapy has not been fully determined. <b>Methods:</b> In this study, highly expressed genes in B cells were obtained by comparing the gene expression in B cells with that in other immune cells and were named TILB-mRNAs. Among them, those genes expressed in patients with head and neck squamous cell carcinoma (HNSCC) identified in The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) atlas were employed to screen for genes associated with HNSCC prognosis using univariate Cox analysis, least absolute shrinkage and selection operator (LASSO) regression analysis, and a TILB-related signature was constructed to predict patient prognostic risk using multivariate Cox regression analyses. <b>Results:</b> The constructed TILB-related signature, which comprised seven mRNAs (<i>ZNF439</i>, <i>KMO</i>, <i>KDM5D</i>, <i>IFT57</i>, <i>HDAC9</i>, <i>GSAP</i>, and <i>CCR</i>7), was verified to have a good ability to predict the prognosis of patients with HNSCC using three independent validation datasets from GEO, and the predictive ability was not affected by other factors. The signature reflected the state of immune cell infiltration in tumor tissue, especially B cells, patients with higher risk scores (RSs) had fewer infiltrating immune cells in their tumors, especially B cells. The gene expression of the TILB-related signature was also verified in TILBs from HNSCC using single-cell analysis, revealing that TILB-related marker genes were differentially expressed in different GB cell subsets. <b>Discussion:</b> This study provides risk assessment and outcome prediction for patients with HNSCC and provides potential targets for immunotherapy of HNSCC.</p>","PeriodicalId":15952,"journal":{"name":"Journal of Immunology Research","volume":"2025 ","pages":"9375885"},"PeriodicalIF":3.5,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944952/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143719827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metal Hypersensitivity in Patients With Failure of Joint Prosthesis Treatment. 关节假体治疗失败患者的金属过敏。
IF 3.5 3区 医学
Journal of Immunology Research Pub Date : 2025-03-10 eCollection Date: 2025-01-01 DOI: 10.1155/jimr/4319686
Jana Bruna, Jarmila Prochazkova, Stepan Podzimek, Lucie Himmlova, Tatjana Janatova, Alex Vinsu
{"title":"Metal Hypersensitivity in Patients With Failure of Joint Prosthesis Treatment.","authors":"Jana Bruna, Jarmila Prochazkova, Stepan Podzimek, Lucie Himmlova, Tatjana Janatova, Alex Vinsu","doi":"10.1155/jimr/4319686","DOIUrl":"https://doi.org/10.1155/jimr/4319686","url":null,"abstract":"<p><p>The objective of this study is to measure lymphocyte responses to metal antigens using MELISA (memory lymphocyte immunostimulation assay) test-modified lymphocyte transformation test (mLTT) and to evaluate metal sensitization in patients with and without the need of prosthetic surgery. This study is a case-control retrospective survey. We retrospectively analyzed all patients from 2013 to 2018 who were referred to the Institute of Dental Medicine, General University Hospital in Prague, and First Faculty of Medicine, Charles University, Prague, either following joint prosthesis-related complications or as a preoperative evaluation concerning metal hypersensitivity. For the control group, we selected healthy adults from our database. A group of 127 patients aged 25-81 years was chosen, 92 of which were female and 35 were male. The patients completed a special questionnaire aimed at information regarding their health status and history of metal exposure. After clinical examination, their peripheral blood samples were taken to perform mLTT. mLTT provided quantitative lymphocyte proliferation measurement, where a stimulation index of >2 indicated metal sensitivity. For statistical analysis, the Fisher's exact test, χ<sup>2</sup> test, McNemar's exact test Student's paired <i>t</i>-test were used. By comparison of the study group and control group mLTT results, it can be stated that patients of the study group showed a higher level of lymphocyte reactivity to most of the tested metal antigens (Ag [silver], Cu [copper], Fe [iron], Mo [molybdenum], Pd [palladium], Pt [platinum], Ti [titanium], and Zn [zinc]) and an elevated incidence of metal hypersensitivity to Hg (mercury), Al (aluminum), Au (gold), Co (cobalt), Cr (chromium), Ni (nickel), and Sn (tin). The evaluation of the data obtained from patients in this study confirmed a significant clinical benefit of mLTT in diagnostics of metal hypersensitivity. Our study has revealed that the patients with the need of prosthetic surgery exhibited an elevated lymphocyte response to metal antigens. This result supports a metal-specific adaptive immune response and suggests involvement of metal exposure as a trigger for their health problems. This knowledge could be helpful in effectively enhancing the treatment of patients with need of orthopedic joint prosthesis.</p>","PeriodicalId":15952,"journal":{"name":"Journal of Immunology Research","volume":"2025 ","pages":"4319686"},"PeriodicalIF":3.5,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11991841/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143988464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plasma-Derived Neuronal Exosomal CircRNAs as Potential Biomarkers for Central Nervous System Infections. 血浆来源的神经元外泌体环状rna作为中枢神经系统感染的潜在生物标志物。
IF 3.5 3区 医学
Journal of Immunology Research Pub Date : 2025-02-25 eCollection Date: 2025-01-01 DOI: 10.1155/jimr/9363390
Rui Zhang, Bihan Deng, Shuaibing Shi, Geng Lu, Jun Xia, Hongwei Liang, Fei Liu, Shuangshuang Gu, Jun Wang
{"title":"Plasma-Derived Neuronal Exosomal CircRNAs as Potential Biomarkers for Central Nervous System Infections.","authors":"Rui Zhang, Bihan Deng, Shuaibing Shi, Geng Lu, Jun Xia, Hongwei Liang, Fei Liu, Shuangshuang Gu, Jun Wang","doi":"10.1155/jimr/9363390","DOIUrl":"10.1155/jimr/9363390","url":null,"abstract":"<p><p>Infections of central nervous system (ICNSs) are inflammatory diseases caused by infectious agents that can infiltrate the brain and spinal cord through various routes, including the bloodstream, peripheral nerves, or cranial nerves. Exosomes are found in plasma and have the capacity to cross the blood-brain barrier (BBB). Exosome constituents, including lipids, proteins, DNA, and RNA, change significantly over time and are correlated with the course of disease. Circular RNA (circRNA) has become a potential biomarker for various diseases, such as ICNSs. This study explores the diagnostic potential of circRNAs derived from brain-derived exosomes in ICNSs. Our research shows that the brain-derived exosomes from patients with CNS illnesses have different patterns of circRNA expression than those from healthy controls. Plasma samples from patients with bacterial ICNSs show significantly elevated levels of hsa_circ__0020840 and hsa_circ_0116108. In contrast, higher expression levels of hsa_circ_0056947 and hsa_circ_0021531 are observed in plasma samples from individuals with viral ICNSs compared to healthy subjects. These observations suggest their potential utility as sensitive and specific biomarkers for these diseases. Moreover, the capacity of circRNAs to be encapsulated within exosomes and released into circulation offers a noninvasive approach for diagnosing ICNSs. These findings highlight the promise of utilizing brain-derived exosomal circRNAs as novel diagnostic markers for ICNSs, which may have implications for improving patient outcomes and disease management.</p>","PeriodicalId":15952,"journal":{"name":"Journal of Immunology Research","volume":"2025 ","pages":"9363390"},"PeriodicalIF":3.5,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11879592/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143557063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemically Induced Senescence Prompts Functional Changes in Human Microglia-Like Cells. 化学诱导的衰老促进人类小胶质样细胞的功能变化。
IF 3.5 3区 医学
Journal of Immunology Research Pub Date : 2025-02-24 eCollection Date: 2025-01-01 DOI: 10.1155/jimr/3214633
S Armanville, C Tocco, Z Haj Mohamad, D Clarke, R Robitaille, J Drouin-Ouellet
{"title":"Chemically Induced Senescence Prompts Functional Changes in Human Microglia-Like Cells.","authors":"S Armanville, C Tocco, Z Haj Mohamad, D Clarke, R Robitaille, J Drouin-Ouellet","doi":"10.1155/jimr/3214633","DOIUrl":"10.1155/jimr/3214633","url":null,"abstract":"<p><p>In response to various stressors, cells can enter a state called cellular senescence which is characterized by irreversible cell cycle arrest and a senescence-associated secretory phenotype (SASP). The progressive accumulation of senescent glial cells in the central nervous system (CNS) with aging suggests a potential role for senescence as driver of aging and inflammation in the brain. As the main immune cell population residing in the CNS, microglia are thought to play a pivotal role in the progression of age-associated neuroinflammation. Furthermore, due to their slow turnover, microglia are highly susceptible to undergoing cellular senescence. However, current understanding of age-related changes in microglia and their impact on brain aging is limited. Due to the challenge in accessing human primary microglia and the lack of models to adequately recapitulate aging, this knowledge is predominantly limited to rodent studies. Here, we chemically induced senescence in a human immortalized microglia cell line with a cocktail of senescence-inducing molecules. We demonstrate that chemically induced senescent microglia adopt a proinflammatory phenotype, have reduced phagocytic activity, and impaired calcium activity. Our results show that chemically induced senescence can mimic features of cellular aging and can provide insight into the impact of aging and cellular senescence on human microglia.</p>","PeriodicalId":15952,"journal":{"name":"Journal of Immunology Research","volume":"2025 ","pages":"3214633"},"PeriodicalIF":3.5,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11876530/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143557030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nucleated Red Blood Cells Secrete Haptoglobin to Induce Immunosuppressive Function in Monocytes. 有核红细胞分泌虹彩素诱导单核细胞的免疫抑制功能
IF 3.5 3区 医学
Journal of Immunology Research Pub Date : 2025-02-20 eCollection Date: 2025-01-01 DOI: 10.1155/jimr/8085784
Shusuke Takeuchi, Satoshi Fujiyama, Motomichi Nagafuji, Miyuki Mayumi, Makoto Saito, Mana Obata-Yasuoka, Hiromi Hamada, Yayoi Miyazono, Hidetoshi Takada
{"title":"Nucleated Red Blood Cells Secrete Haptoglobin to Induce Immunosuppressive Function in Monocytes.","authors":"Shusuke Takeuchi, Satoshi Fujiyama, Motomichi Nagafuji, Miyuki Mayumi, Makoto Saito, Mana Obata-Yasuoka, Hiromi Hamada, Yayoi Miyazono, Hidetoshi Takada","doi":"10.1155/jimr/8085784","DOIUrl":"10.1155/jimr/8085784","url":null,"abstract":"<p><p>Nucleated red blood cells (NRBCs) are precursors of red blood cells (RBCs), but also possess variety of immunomodulatory effects. However, among the three types of NRBCs, the immunological effects of human CD45- NRBCs remain largely unknown. We have previously shown that cord blood-derived CD45- NRBCs and adult peripheral blood-derived monocytes cocultured in a lipopolysaccharide (LPS)-stimulated indirect coculture system that avoided cell-to-cell contact, increase IL-10 and decrease TNF-<i>α</i> secretion, suggesting an immunosuppressive function of CD45- NRBCs via an unknown soluble factor. The peripheral blood of fetuses and neonates has abundant NRBCs and is physiologically polycythemic, which may lead to the peripheral accumulation of toxic plasma-free hemoglobin. Plasma-free hemoglobin binds to haptoglobin, forming a haptoglobin-hemoglobin complex, which is processed within monocytes via the CD163- heme oxygenase 1 (HO-1) axis and secretes IL-10. Therefore, we hypothesized that NRBCs secrete haptoglobin and induce the immunosuppressive function of monocytes by activating the CD163-HO-1 axis. We found that immunosuppressive response decreased when the coculture medium was supplemented with an anti-CD163 blocking antibody or the HO-1 inhibitor zinc protoporphyrin IX (ZnPP-IX). Haptoglobin levels in the culture medium containing NRBCs were high and expressed the haptoglobin gene. Thus, CD45- NRBCs secreted haptoglobin and activated the immunosuppressive function of monocytes.</p>","PeriodicalId":15952,"journal":{"name":"Journal of Immunology Research","volume":"2025 ","pages":"8085784"},"PeriodicalIF":3.5,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11867727/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143523634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FABP7 in Hepatic Macrophages Promotes Fibroblast Activation and CD4+ T-Cell Migration by Regulating M2 Polarization During Liver Fibrosis. 肝巨噬细胞FABP7通过调节M2极化促进成纤维细胞活化和CD4+ t细胞迁移
IF 3.5 3区 医学
Journal of Immunology Research Pub Date : 2025-02-19 eCollection Date: 2025-01-01 DOI: 10.1155/jimr/6987981
Hirofumi Miyazaki, Tunyanat Wannakul, Shuhan Yang, Dandan Yang, Ayano Karasawa, Ai Shishido, Ruizhu Cao, Yui Yamamoto, Yoshiteru Kagawa, Shuhei Kobayashi, Masaki Ogata, Motoko Maekawa, Yuji Owada
{"title":"FABP7 in Hepatic Macrophages Promotes Fibroblast Activation and CD4<sup>+</sup> T-Cell Migration by Regulating M2 Polarization During Liver Fibrosis.","authors":"Hirofumi Miyazaki, Tunyanat Wannakul, Shuhan Yang, Dandan Yang, Ayano Karasawa, Ai Shishido, Ruizhu Cao, Yui Yamamoto, Yoshiteru Kagawa, Shuhei Kobayashi, Masaki Ogata, Motoko Maekawa, Yuji Owada","doi":"10.1155/jimr/6987981","DOIUrl":"10.1155/jimr/6987981","url":null,"abstract":"<p><p>Hepatic macrophages respond to various microenvironmental signals and play a central role in maintaining hepatic homeostasis, dysregulation of which leads to various liver diseases. Fatty acid-binding protein 7 (FABP7), an intracellular lipid chaperone for polyunsaturated fatty acids (PUFAs), is highly expressed in liver macrophages. However, the mechanisms by which FABP7 regulates hepatic macrophage activation remain unclear. Therefore, we aimed to elucidate the mechanisms underlying the effects of FABP7 on the functions of hepatic macrophages in metabolic dysfunction-associated steatohepatitis (MASH) and liver fibrosis models. In this study, we found that FABP7-deficient macrophages exhibited impaired M2 polarization, which reduced the fibrotic response of myofibroblasts and CD4<sup>+</sup> T-cell infiltration into the liver tissues in a carbon tetrachloride (CCl<sub>4</sub>)-induced hepatic fibrosis model. In vitro, FABP7-deficient macrophages exhibited decreased levels of peroxisome proliferator-activated receptor (PPAR)-<i>γ</i> and its target genes, including C-C motif chemokine ligand (CCL)-17 and transforming growth factor-<i>β</i> (TGF-<i>β</i>), compared to the wild-type (WT) macrophages post-interleukin (IL)-4 stimulation. However, these effects were inhibited by a PPAR<i>γ</i> inhibitor. IL-4-stimulated WT macrophages also promoted CD4<sup>+</sup> T-cell migration and hepatic fibroblast (TWNT-1 hepatic stellate cell [HSC]) activation, indicated by increased mRNA levels of actin alpha 2, smooth muscle (<i>ACTA2</i>), and collagen type I alpha 1 (<i>COL1A1</i>); however, these effects were inhibited in FABP7-deficient macrophages. Overall, FABP7 in hepatic macrophages modulated the crosstalk between hepatic fibroblasts and T cells by regulating M2 polarization. Therefore, regulation of hepatic macrophage function by FABP7 is a potential therapeutic target for liver fibrosis.</p>","PeriodicalId":15952,"journal":{"name":"Journal of Immunology Research","volume":"2025 ","pages":"6987981"},"PeriodicalIF":3.5,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11865460/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143523628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Risk Allele rs117026326-Mediated Alternative Splicing of GTF2I Promotes B Cell Proliferation in Primary Sjögren's Syndrome. 风险等位基因rs117026326介导的GTF2I选择性剪接促进原发性Sjögren综合征的B细胞增殖。
IF 3.5 3区 医学
Journal of Immunology Research Pub Date : 2025-02-18 eCollection Date: 2025-01-01 DOI: 10.1155/jimr/4821639
Chaowen Luo, Chaofeng Lian, Jinlei Sun, Liling Zhao, Shuo Zhang, Yongzhe Li, Hua Chen, Fengchun Zhang
{"title":"Risk Allele rs117026326-Mediated Alternative Splicing of GTF2I Promotes B Cell Proliferation in Primary Sjögren's Syndrome.","authors":"Chaowen Luo, Chaofeng Lian, Jinlei Sun, Liling Zhao, Shuo Zhang, Yongzhe Li, Hua Chen, Fengchun Zhang","doi":"10.1155/jimr/4821639","DOIUrl":"10.1155/jimr/4821639","url":null,"abstract":"<p><p><b>Objectives:</b> Primary Sjögren's syndrome (pSS) is associated with a risk allele T of rs117026326 located at a potential splicing enhancer within the intronic region of general transcription factor II-I (GTF2I). This study aimed to explore the rs117026326-regulated alternative splicing of GTF2I and its role in B cell overactivation in pSS. <b>Methods:</b> GTF2I isoform expressions and rs117026326 genotypes of pSS peripheral blood mononuclear cells (PBMCs) were examined using quantitative PCR and Sanger sequencing, respectively. GTF2IΔ was overexpressed in B cells, T cells, and macrophages using plasmid transfection. Proliferation of B cells and T cells was determined using Cell Counting Kit-8 (CCK8) assay. CD4<sup>+</sup> T cell differentiation was inspected using flow cytometry. Proinflammatory cytokine production of macrophages was investigated using quantitative PCR. c-FOS expression in GTF2IΔ-transfected B cells was tested by quantitative PCR, and proliferation of GTF2IΔ-transfected B cells treated with c-FOS siRNA or c-FOS inhibitor was interrogated using CCK8 assay. <b>Results:</b> pSS patients with risk allele of rs117026326 expressed higher levels of GTF2IΔ and GTF2Iζ isoforms. GTF2IΔ expression was correlated with serum immunoglobulin G (IgG). GTF2IΔ promoted B cell proliferation and upregulated c-FOS expression. Knocking down or inhibition of c-FOS reversed B cell proliferation driven by GTF2IΔ. <b>Conclusion:</b> pSS risk allele of rs117026326 modulates alternative splicing of GTF2I and upregulates GTF2IΔ isoform, which promotes B cell proliferation through enhancing binding and transcription of c-FOS.</p>","PeriodicalId":15952,"journal":{"name":"Journal of Immunology Research","volume":"2025 ","pages":"4821639"},"PeriodicalIF":3.5,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11858827/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143501771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Durability of Functional SARS-CoV-2-Specific Immunological Memory and T Cell Response up to 8-9 Months Postrecovery From COVID-19. COVID-19恢复后8-9个月功能性sars - cov -2特异性免疫记忆和T细胞反应的持久性
IF 3.5 3区 医学
Journal of Immunology Research Pub Date : 2025-02-10 eCollection Date: 2025-01-01 DOI: 10.1155/jimr/9743866
Diptee Trimbake, Dharmendra Singh, Yogesh Gurav K, Prasad Babar, Varsha Dange S, Anuradha S Tripathy
{"title":"Durability of Functional SARS-CoV-2-Specific Immunological Memory and T Cell Response up to 8-9 Months Postrecovery From COVID-19.","authors":"Diptee Trimbake, Dharmendra Singh, Yogesh Gurav K, Prasad Babar, Varsha Dange S, Anuradha S Tripathy","doi":"10.1155/jimr/9743866","DOIUrl":"10.1155/jimr/9743866","url":null,"abstract":"<p><p>Research on long-term follow-up in individuals who have recovered from coronavirus disease-19 (COVID-19) would yield insights regarding their immunity status and identify those who need booster vaccinations. This study evaluated the longevity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific cellular and humoral memory responses, as well as T cell effector functionalities, at 1-2 months (<i>n</i> = 40), 8-9 months (<i>n</i> = 40), and 12 months/1 year (<i>n</i> = 27) following recovery from SARS-CoV-2 infection. CTL response by enzyme-linked immunospot (ELISPOT); levels of cytokine by Bio-Plex, natural killer (NK), CD4+ helper, and CD8+ cytotoxic T cell functionalities using flow cytometry; anti-SARS-CoV-2 IgG by ELISA; and levels of neutralizing antibodies (NAbs) by surrogate virus NAb assay were assessed. The levels of SARS-CoV-2-specific IgG and NAb at 1-2 and 8-9 months postrecovery were hand in hand and appeared declining. SARS-CoV-2-specific B, memory B and plasma cells, and T cells sustained up to 8-9 months. Increased expression of CD107a/IFN-γ by NK cells and cytotoxic T cells at 8-9 months could be indicative of SARS-CoV-2-specific effector functions. Recovered individuals with positive and negative IgG antibody status displayed T cell response up to 1 year and 8-9 months, respectively, emphasizing the durabilty of effector immunity up to 8-9 months regardless of IgG antibody status. Overall, the recovered individuals exhibited robust immunological memory, sustained T cell response with effector functionality against SARS-CoV-2 that persists for at least 8-9 months.</p>","PeriodicalId":15952,"journal":{"name":"Journal of Immunology Research","volume":"2025 ","pages":"9743866"},"PeriodicalIF":3.5,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11832264/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143440943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the Interplay Between Dendritic Cells and Natural Killer Cells as Key Players in Leishmania Infection. 揭示树突状细胞和自然杀伤细胞在利什曼原虫感染中的关键作用。
IF 3.5 3区 医学
Journal of Immunology Research Pub Date : 2025-02-10 eCollection Date: 2025-01-01 DOI: 10.1155/jimr/3176927
Ana Valério-Bolas, Mafalda Meunier, Armanda Rodrigues, Joana Palma-Marques, Rui Ferreira, Inês Cardoso, Lis Lobo, Marta Monteiro, Telmo Nunes, Ana Armada, Wilson T Antunes, Graça Alexandre-Pires, Isabel Pereira da Fonseca, Gabriela Santos-Gomes
{"title":"Unveiling the Interplay Between Dendritic Cells and Natural Killer Cells as Key Players in <i>Leishmania</i> Infection.","authors":"Ana Valério-Bolas, Mafalda Meunier, Armanda Rodrigues, Joana Palma-Marques, Rui Ferreira, Inês Cardoso, Lis Lobo, Marta Monteiro, Telmo Nunes, Ana Armada, Wilson T Antunes, Graça Alexandre-Pires, Isabel Pereira da Fonseca, Gabriela Santos-Gomes","doi":"10.1155/jimr/3176927","DOIUrl":"10.1155/jimr/3176927","url":null,"abstract":"<p><p>Leishmaniasis is a group of parasitic diseases whose etiological agent is the protozoa <i>Leishmania</i>. These diseases afflict impoverished populations in tropical and subtropical regions and affect wild and domestic animals. Canine leishmaniasis is a global disease mostly caused by <i>L. infantum</i>. Dogs are recognized as a good reservoir since harbor the infection long before developing the disease, facilitating parasite transmission. Furthermore, there is growing evidence that dogs may also be the reservoir of the American <i>Leishmania</i> spp. as <i>L. amazonensis</i>. The innate immune response is the first defense line against pathogens, which includes natural killer (NK) and dendritic cells (DCs). By recognizing and ultimately destroying infected cells, and by secreting immune mediators that favor inflammatory microenvironments, NK cells take the lead in the infectious process. When interacting with <i>Leishmania</i> parasites, DCs become activated and play a key role in driving the host immune response. While activated DCs can modulate NK cell activity, <i>Leishmania</i> parasites can directly activate NK cells by interacting with innate immune receptors. Once activated, NK cells can engage in a bidirectional interplay with DCs. However, the complexity of these interactions during <i>Leishmania</i> infection makes it challenging to fully understand the underlying processes. To further explore this, the present study investigated the dynamic interplay established between monocyte-derived DCs (moDCs) and putative NK (pNK) cells of dogs during <i>Leishmania</i> infection. Findings indicate that the crosstalk between moDCs exposed to <i>L. infantum</i> or <i>L. amazonensis</i> and pNK cells enhances chemokine upregulation, potentially attracting other leukocytes to the site of infection. pNK cells activated by <i>L. infantum</i> infected DCs upregulate <i>IL-10</i>, which can lead to a regulatory immune response while moDCs exposed to <i>L. amazonensis</i> induced pNK cells to overexpress <i>IFN-γ</i> and <i>IL-13</i>, favoring a mix of pro- and anti-inflammatory response. In addition, parasite-derived extracellular vesicles (EVs) can modulate the host immune response by stimulating the upregulation of anti-inflammatory cytokines and perforin release, which may impact infection outcomes. Thus, <i>Leishmania</i> and parasitic EVs can influence the bidirectional interplay between canine NK cells and DCs.</p>","PeriodicalId":15952,"journal":{"name":"Journal of Immunology Research","volume":"2025 ","pages":"3176927"},"PeriodicalIF":3.5,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11832263/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143440947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信