Journal of Geophysical Research: Earth Surface最新文献

筛选
英文 中文
Seismic Modeling of Bedload Transport in a Gravel-Bed Alluvial Channel 砾床冲积河道中床载荷迁移的地震建模
IF 3.5 2区 地球科学
Journal of Geophysical Research: Earth Surface Pub Date : 2024-09-24 DOI: 10.1029/2024JF007761
Loc Luong, Daniel Cadol, Susan Bilek, J. Mitchell McLaughlin, Jonathan B. Laronne, Jens M. Turowski
{"title":"Seismic Modeling of Bedload Transport in a Gravel-Bed Alluvial Channel","authors":"Loc Luong,&nbsp;Daniel Cadol,&nbsp;Susan Bilek,&nbsp;J. Mitchell McLaughlin,&nbsp;Jonathan B. Laronne,&nbsp;Jens M. Turowski","doi":"10.1029/2024JF007761","DOIUrl":"https://doi.org/10.1029/2024JF007761","url":null,"abstract":"<p>Recent theoretical models and field observations suggest that fluvial bedload flux can be estimated from seismic energy measured within appropriate frequency bands. We present an application of the Tsai et al. (2012, https://doi.org/10.1029/2011gl050255) bedload seismic model to an ephemeral channel located in the semi-arid southwestern US and incorporate modifications to better estimate bedload flux in this environment. To test the model, we collected streambank seismic signals and directly measured bedload flux during four flash-floods. Bedload predictions calculated by inversion from the Tsai model underestimated bedload flux observations by one-to-two orders of magnitude at low stages. However, model predictions were better for moderate flow depths (&gt;50 cm), where saltation is expected to dominate bedload transport. We explored three differences between the model assumptions and our field conditions: (a) rolling and sliding particles have different impact frequencies than saltating particles; (b) the velocity and angle of impact of rolling particles onto the riverbed differ; and (c) the fine-grained alluvial character of this and similar riverbeds leads to inelastic impacts, as opposed to the originally conceptualized elastic impacts onto rigid bedrock. We modified the original model to assume inelastic bed impacts and to incorporate rolling and sliding by adjusting the statistical distributions of bedload impact frequency, velocity, and angle. Our modified “multiple-transport-mode bedload seismic model” decreased error relative to observations to less than one order of magnitude across all measured flow conditions. Further investigations in other environmental settings are required to demonstrate the robustness and general applicability of the model.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 9","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142316685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Segregation-Induced Flow Transitions in Rock-Ice Mixtures: Implications for Rock-Ice Avalanche Dynamics 岩石-冰混合物中由分离引起的流动转变:对岩冰雪崩动力学的影响
IF 3.5 2区 地球科学
Journal of Geophysical Research: Earth Surface Pub Date : 2024-09-23 DOI: 10.1029/2024JF007831
Gordon G. D. Zhou, Kahlil F. E. Cui, Lu Jing, Anne Mangeney, Yifei Cui, Yu Huang, Xiaoqing Chen
{"title":"Segregation-Induced Flow Transitions in Rock-Ice Mixtures: Implications for Rock-Ice Avalanche Dynamics","authors":"Gordon G. D. Zhou,&nbsp;Kahlil F. E. Cui,&nbsp;Lu Jing,&nbsp;Anne Mangeney,&nbsp;Yifei Cui,&nbsp;Yu Huang,&nbsp;Xiaoqing Chen","doi":"10.1029/2024JF007831","DOIUrl":"https://doi.org/10.1029/2024JF007831","url":null,"abstract":"<p>Global climate change has been intensifying the scale and frequency of rock-ice avalanches and similar catastrophic mass movements in high-mountain regions. The difference in the physical characteristics of rock and ice particles leads to mixing and segregation during flow. Although, both particle segregation and the presence of ice fundamentally alter flow behavior, the joint influence and feedback of these two aspects are overlooked in state-of-the-art rock-ice avalanche models. Using discrete element simulations, we show that by controlling the distribution of inter-particle frictional interactions within the mixture, segregation patterns resulting from the size, density, concentration, and surface friction differences of rock and ice phases can induce sharp velocity gradients along the flowing thickness. Flowing layers where low friction contacts with ice are abundant tend to flow faster and can induce slow creeping motion in an otherwise static basal layer dominated by more frictional rocks. Based on these observations, we find that the effective friction of rock-ice flows for various mixture concentrations and size ratios can be obtained as a sum of the single-phase rheologies of rocks and ice weighted according to their microscopic contact probabilities. This effective friction for rock-ice mixtures allows us to extend a recent non-local granular fluidity framework that captures the complex segregation-flow feedback mechanism in rock-ice flows. The findings provide a deeper micromechanical understanding of how particle interactions influence rock-ice avalanche mobility, which ultimately improves flow models needed for hazard assessment and mitigation.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 9","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Catchment-Averaged Erosion Rates Reveal Signals of Divide Migration and Drainage Capture 流域平均侵蚀率揭示了分水岭迁移和排水捕获的信号
IF 3.5 2区 地球科学
Journal of Geophysical Research: Earth Surface Pub Date : 2024-09-20 DOI: 10.1029/2024JF007701
A. M. Hoskins, M. Attal, S. M. Mudd, M. Castillo
{"title":"Catchment-Averaged Erosion Rates Reveal Signals of Divide Migration and Drainage Capture","authors":"A. M. Hoskins,&nbsp;M. Attal,&nbsp;S. M. Mudd,&nbsp;M. Castillo","doi":"10.1029/2024JF007701","DOIUrl":"10.1029/2024JF007701","url":null,"abstract":"&lt;p&gt;Divide migration and drainage capture contribute to drainage reorganization. The relative contributions of each are debated, as are the extent to which an observable signal of drainage reorganization may be preserved in quantifiable erosion rates. We numerically model divide migration and drainage capture, and monitor the effects on catchment-averaged erosion rates in the growing (area gaining) and shrinking (area losing) catchments. Divide migration produces a rapid increase in catchment-averaged erosion rates in the headwaters of the growing catchment. However, we find this catchment-averaged erosion rate signal is quickly obscured with increasing distance downstream in non-uniform uplift settings, limiting our ability to detect divide migration through catchment-averaged erosion rate measurements in non-uniform uplift settings. Drainage capture produces the strongest catchment-averaged erosion rate signal immediately adjacent to the point of capture. We find this signal persists in the landscape longest, and without depleting in magnitude, in the area upstream of the point of capture. The Sierra la Laguna mountain range (Mexico) displays substantial evidence of recent and ongoing drainage capture across the main drainage divide, including: beheaded catchments, windgaps, barbed drainages, &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;χ&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $chi $&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; profiles and across divide Gilbert Metrics. We use the Sierra la Laguna to test the detectability of drainage reorganization related catchment-averaged erosion rate signals in a natural setting. &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mmultiscripts&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;B&lt;/mi&gt;\u0000 &lt;mi&gt;e&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mprescripts&gt;&lt;/mprescripts&gt;\u0000 &lt;none&gt;&lt;/none&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;10&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mmultiscripts&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${}^{10}Be$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-derived catchment-averaged erosion rates are found to be twice as fast in the suspected growing catchment headwaters (0.17 &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;m&lt;/mi&gt;\u0000 &lt;mi&gt;m&lt;/mi&gt;\u0000 &lt;mspace&gt;&lt;/mspace&gt;\u0000 &lt;mi&gt;y&lt;/mi&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;r&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $mm y{r}^{-1}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 9","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JF007701","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142267497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterizing Seismic Activity From a Rock Cliff With Unsupervised Learning 利用无监督学习确定岩崖地震活动的特征
IF 3.5 2区 地球科学
Journal of Geophysical Research: Earth Surface Pub Date : 2024-09-20 DOI: 10.1029/2024JF007799
Alexi Morin, Bernard Giroux, Francis Gauthier
{"title":"Characterizing Seismic Activity From a Rock Cliff With Unsupervised Learning","authors":"Alexi Morin,&nbsp;Bernard Giroux,&nbsp;Francis Gauthier","doi":"10.1029/2024JF007799","DOIUrl":"10.1029/2024JF007799","url":null,"abstract":"<p>Passive seismic monitoring (PSM) is emerging as a tool for detecting rockfall events and pre-failure seismicity. In this paper, the potential of PSM for rockfall monitoring is assessed through a case study carried out in Gros-Morne, Eastern Québec, in a region with prominent roadside cliffs, where more than 500 fallen rocks are found on the main regional road each year. The proposed method relies on using sensitive STA-LTA windows to detect a very large number of seismic events and build a comprehensive catalog. In total, more than 70,000 seismic events were detected over one year. Gaussian mixtures are used to partition the data set. Based on visual inspection of the data, a main working hypothesis is that the seismic events can be clustered into three groups. After analyzing the spatio-temporal distribution of the events in each group, we find that the events of one cluster can be associated with anthropogenic activity. The frequency of occurrence of the events of the different clusters and their link with meteorological data is also examined through a regression exercise, to assess the importance of the meteorological variables as explanatory variables. The results allow us to postulate on the physical origins of the signals in the different clusters, attributing them to rockfall activity and wind-induced seismic noise.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 9","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JF007799","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142267498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Constraining the Effect of Climate and Rock Porosity on Weathering Extent in the Volcanic Island of Santa Cruz (Galápagos, Ecuador) 制约气候和岩石孔隙度对圣克鲁斯火山岛(厄瓜多尔加拉帕戈斯)风化程度的影响
IF 3.5 2区 地球科学
Journal of Geophysical Research: Earth Surface Pub Date : 2024-09-19 DOI: 10.1029/2024JF007651
R. Paque, I. Alomia Herrera, J. L. Dixon, A. Molina, F. Zehetner, V. Vanacker
{"title":"Constraining the Effect of Climate and Rock Porosity on Weathering Extent in the Volcanic Island of Santa Cruz (Galápagos, Ecuador)","authors":"R. Paque,&nbsp;I. Alomia Herrera,&nbsp;J. L. Dixon,&nbsp;A. Molina,&nbsp;F. Zehetner,&nbsp;V. Vanacker","doi":"10.1029/2024JF007651","DOIUrl":"https://doi.org/10.1029/2024JF007651","url":null,"abstract":"<p>Volcanic soils are among the most productive soils in the world as they can accumulate large amounts of organic carbon and nitrogen and have good water storage capacity. They are extensively used worldwide for agriculture, which makes it difficult to study the soil-landscape dynamics under natural conditions. By working in the Galápagos Islands, a UNESCO World Heritage Site, we aimed to constrain soil development over millennial timescales using empirical data. Our monitoring sites on Santa Cruz Island cover a 10 km long NW-SE transect with an 8-fold increase in precipitation and associated vegetation changes. By controlling for age and chemical composition of the basaltic parent material, we investigated the influence of precipitation rates on soil weathering. At the landscape scale, soil weathering degree increased with increasing precipitation, as shown by the spatial patterns in soil depth, pH, mass loss coefficients, chemical index of alteration, chemical depletion fraction, and total reserve in bases. In addition to the climatic effect, rock porosity strongly enhanced basalt weathering. Porosity-enhanced weathering is particularly important in the humid and perhumid precipitation regimes: soils developed on porous scoriae developed weathering mantles that are ∼10-fold thicker and have 10-fold higher mass losses due to weathering compared to soils developed on basalt lava flows. Our results demonstrated that variations in rock pore dimensions and distribution can lead to large variations in basalt weathering rates, particularly in humid and perhumid climates where deep leaching can be facilitated by rock porosity.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 9","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JF007651","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142273263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution of Turbulent Boundary Conditions on the Surface of Large Barchan Dunes: Anomalies in Aerodynamic Roughness and Shear Velocity, Aeolian Threshold, and the Role of Dune Skewness 大型巴钦沙丘表面湍流边界条件的演变:空气动力粗糙度和剪切速度的反常现象、风化阈值以及沙丘斜度的作用
IF 3.5 2区 地球科学
Journal of Geophysical Research: Earth Surface Pub Date : 2024-09-18 DOI: 10.1029/2023JF007599
M. Y. Louge, A. Valance, J. Fang, S. J. Harnett, F. Porté-Agel, P. Chasle
{"title":"Evolution of Turbulent Boundary Conditions on the Surface of Large Barchan Dunes: Anomalies in Aerodynamic Roughness and Shear Velocity, Aeolian Threshold, and the Role of Dune Skewness","authors":"M. Y. Louge,&nbsp;A. Valance,&nbsp;J. Fang,&nbsp;S. J. Harnett,&nbsp;F. Porté-Agel,&nbsp;P. Chasle","doi":"10.1029/2023JF007599","DOIUrl":"https://doi.org/10.1029/2023JF007599","url":null,"abstract":"<p>We recorded aerodynamic roughness and shear velocity along transects on and around mature crescent-shaped barchan dunes of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>4.5</mn>\u0000 <mspace></mspace>\u0000 <mi>m</mi>\u0000 </mrow>\u0000 <annotation> $4.5 mathrm{m}$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>27</mn>\u0000 <mspace></mspace>\u0000 <mi>m</mi>\u0000 </mrow>\u0000 <annotation> $27 mathrm{m}$</annotation>\u0000 </semantics></math> height above the horizontal rock-covered Qatar desert by fitting to the log-law time-averaged vertical velocity profiles acquired from triads of ultrasonic anemometers penetrating the inner turbulent boundary layer. Shear velocity first decreased, then recovered as air climbed on the dune, with a local maximum ahead of the crest as predicted by the Jackson and Hunt (1975, https://doi.org/10.1002/qj.49710143015) theory. Unlike flows over gentler bedforms without a slope discontinuity, an anomalous peak of shear velocity also arose on the dune centerline at the brink, which the theory attributed to skewness in the dune transect profile. The onset of aeolian transport produced a log-law passing through the Bagnold (1941, https://doi.org/10.1007/978-94-009-5682-7) focal point. It was bracketed by noticeable hysteretic peaks in the correlation between wind speed and entrained sand flux. The dunes' rocky surroundings and topography produced an aerodynamic roughness at odds with the Nikuradse (1933, https://ntrs.nasa.gov/citations/19930093938) data for fully developed turbulent boundary layers. Large-eddy numerical simulations illustrated the sensitivity of shear velocity to wide changes in aerodynamic roughness from desert floor to dune surface.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 9","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023JF007599","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142245029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Topography Controls Variability in Circumpolar Permafrost Thaw Pond Expansion 地形控制着极圈冻土解冻池扩展的变异性
IF 3.5 2区 地球科学
Journal of Geophysical Research: Earth Surface Pub Date : 2024-09-18 DOI: 10.1029/2024JF007675
C. J. Abolt, A. L. Atchley, D. R. Harp, M. T. Jorgenson, C. Witharana, W. R. Bolton, J. Schwenk, T. Rettelbach, G. Grosse, J. Boike, I. Nitze, A. K. Liljedahl, C. T. Rumpca, C. J. Wilson, K. E. Bennett
{"title":"Topography Controls Variability in Circumpolar Permafrost Thaw Pond Expansion","authors":"C. J. Abolt,&nbsp;A. L. Atchley,&nbsp;D. R. Harp,&nbsp;M. T. Jorgenson,&nbsp;C. Witharana,&nbsp;W. R. Bolton,&nbsp;J. Schwenk,&nbsp;T. Rettelbach,&nbsp;G. Grosse,&nbsp;J. Boike,&nbsp;I. Nitze,&nbsp;A. K. Liljedahl,&nbsp;C. T. Rumpca,&nbsp;C. J. Wilson,&nbsp;K. E. Bennett","doi":"10.1029/2024JF007675","DOIUrl":"https://doi.org/10.1029/2024JF007675","url":null,"abstract":"<p>One of the most conspicuous signals of climate change in high-latitude tundra is the expansion of ice wedge thermokarst pools. These small but abundant water features form rapidly in depressions caused by the melting of ice wedges (i.e., meter-scale bodies of ice embedded within the top of the permafrost). Pool expansion impacts subsequent thaw rates through a series of complex positive and negative feedbacks which play out over timescales of decades and may accelerate carbon release from the underlying sediments. Although many local observations of ice wedge thermokarst pool expansion have been documented, analyses at continental to pan-Arctic scales have been rare, hindering efforts to project how strongly this process may impact the global carbon cycle. Here we present one of the most geographically extensive and temporally dense records yet compiled of recent pool expansion, in which changes to pool area from 2008 to 2020 were quantified through satellite-image analysis at 27 survey areas (measuring 10–35 km<sup>2</sup> each, or 400 km<sup>2</sup> in total) dispersed throughout the circumpolar tundra. The results revealed instances of rapid expansion at 44% (<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>±</mo>\u0000 </mrow>\u0000 <annotation> $pm $</annotation>\u0000 </semantics></math>15%) of survey areas. Considered alone, the extent of departures from historical mean air temperatures did not account for between site variation in rates of change to pool area. Pool growth was most clearly associated with upland (i.e., hilly) terrain and elevated silt content at soil depths greater than one meter. These findings suggest that, at short time scales, pedologic and geomorphologic conditions may exert greater control on pool dynamics in the warming Arctic than spatial variability in the rate of air temperature increases.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 9","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JF007675","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142245031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
When Does the Concavity Index Constrain Stream Power Parameters? 什么情况下凹凸指数会限制流功率参数?
IF 3.5 2区 地球科学
Journal of Geophysical Research: Earth Surface Pub Date : 2024-09-16 DOI: 10.1029/2023JF007584
Adam G. G. Smith, Matthew Fox
{"title":"When Does the Concavity Index Constrain Stream Power Parameters?","authors":"Adam G. G. Smith,&nbsp;Matthew Fox","doi":"10.1029/2023JF007584","DOIUrl":"https://doi.org/10.1029/2023JF007584","url":null,"abstract":"<p>By defining the attributes of river networks, we can quantitatively extract records of climatic and tectonic changes from them. The stream power incision model (SPIM) provides a framework within which this can be achieved, as it facilitates the calculation of the relative rock uplift from river characteristics. One parameter that has been widely employed in tectonic and fluvial geomorphology is the channel steepness index, a metric that can represent the normalized rock uplift rate experienced by a river. However, to accurately infer the channel steepness index, we must accurately estimate <i>m/n</i>, the ratio between the two positive exponents of the SPIM. Present methodologies to constrain <i>m/n</i> rely on an assumption that rock uplift and erodibility are spatially invariant. These conditions are rarely present on Earth. In this study, we use a synthetic example and examples from the Siwalik Hills and Olympic Mountains to demonstrate how existing methodologies to constrain <i>m/n</i> produce systematic errors when there is spatial variation, and particularly spatial gradients, in the processes driving landscape evolution. To solve this problem, we present a methodology to estimate <i>m/n</i> based on a large river network inversion that accounts for spatial variation in landscapes. After demonstrating that the methodology can accurately recover <i>m/n</i> in our synthetic landscape, we show that our methodology can reconcile contrasting observations in the Siwaliks, and is critical to inferring accurate values of channel steepness index in the Olympic Mountains. This highlights the utility of large topographic inversions for investigating landscape dynamics.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 9","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023JF007584","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142244932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temporal Behavior of Glacially Induced Stresses and Strains at Potential Sites for Long-Term Storage of Used Nuclear Fuel in Canada 加拿大废核燃料长期贮存潜在地点的冰川诱发应力和应变的时间行为
IF 3.5 2区 地球科学
Journal of Geophysical Research: Earth Surface Pub Date : 2024-09-16 DOI: 10.1029/2024JF007705
Holger Steffen, Rebekka Steffen
{"title":"Temporal Behavior of Glacially Induced Stresses and Strains at Potential Sites for Long-Term Storage of Used Nuclear Fuel in Canada","authors":"Holger Steffen,&nbsp;Rebekka Steffen","doi":"10.1029/2024JF007705","DOIUrl":"https://doi.org/10.1029/2024JF007705","url":null,"abstract":"<p>Continental-scale glaciations cause deformation, geopotential, rotation and stress changes of the Earth. Subsurface stress changes have implications to future activities such as carbon capture and storage, enhanced oil recovery and deep geological disposal of nuclear waste. We model glacially induced stresses, strain changes and deformation for North America, with emphasis on the two potential sites for long-term storage of used nuclear fuel in Canada (Saugeen Ojibway Nation (SON)-South Bruce area in southwestern Ontario and Wabigoon Lake Ojibway Nation (WLON)-Ignace area in northwestern Ontario). We apply a revised, high-resolution ice history of the past glacial cycle from the University of Toronto Glacial Systems Model, assumed to be representative for future glacial cycles, together with a set of seven different one- and three-dimensional earth structures. We find that glacially induced stresses and strains can vary strongly throughout a glacial cycle, whereas especially the horizontal components can change from tensional to compressive in nature. Such changes can happen within a few 1,000 years, caused by drastic and rapid ice thickness increase or decrease above the potential site. Despite SON-South Bruce being located further away from the ice sheet center than WLON-Ignace and temporarily in the forebulge of the developing ice sheet during glaciation, stresses and strains are very similar in magnitude and range at both sites. We also see the potential that the glacially induced stresses can alter the direction of the pre-existing maximum horizontal stress at SON-South Bruce. These results will be incorporated in the site safety and site selection process.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 9","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JF007705","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142244931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coincident Lake Drainage and Grounding Line Retreat at Engelhardt Subglacial Lake, West Antarctica 南极洲西部恩格尔哈特冰川下湖同时出现的湖泊排水和接地线消退现象
IF 3.5 2区 地球科学
Journal of Geophysical Research: Earth Surface Pub Date : 2024-09-14 DOI: 10.1029/2024JF007724
B. I. D. Freer, O. J. Marsh, H. A. Fricker, A. E. Hogg, M. R. Siegfried, D. Floricioiu, W. Sauthoff, R. Rigby, S. F. Wilson
{"title":"Coincident Lake Drainage and Grounding Line Retreat at Engelhardt Subglacial Lake, West Antarctica","authors":"B. I. D. Freer,&nbsp;O. J. Marsh,&nbsp;H. A. Fricker,&nbsp;A. E. Hogg,&nbsp;M. R. Siegfried,&nbsp;D. Floricioiu,&nbsp;W. Sauthoff,&nbsp;R. Rigby,&nbsp;S. F. Wilson","doi":"10.1029/2024JF007724","DOIUrl":"https://doi.org/10.1029/2024JF007724","url":null,"abstract":"<p>Antarctica has an active subglacial hydrological system, with interconnected subglacial lakes fed by subglacial meltwater. Subglacial hydrology can influence basal sliding, inject freshwater into the sub-ice-shelf cavity, and impact sediment transport and deposition which can affect the stability of grounding lines (GLs). We used satellite altimetry data from the ICESat, ICESat-2, and CryoSat-2 missions to document the second recorded drainage of Engelhardt Subglacial Lake (SLE), which began in July 2021 and discharged more than 2.3 km<sup>3</sup> of subglacial water into the Ross Ice Shelf cavity. We used differential synthetic aperture radar interferometry from RADARSAT-2 and TerraSAR-X alongside ICESat-2 repeat-track laser altimetry (RTLA) and REMA digital elevation model strips to detect 2–13 km of GL retreat since the previous drainage event in 2003–06. Combining these satellite observations, we evaluated the mechanism triggering SLE drainage, the cause of the observed GL retreat, and the interplay between subglacial hydrology and GL dynamics. We find that: (a) SLE drainage was initiated by influx from a newly identified upstream lake; (b) the observed GL retreat is mainly driven by the continued retreat of Engelhardt Ice Ridge and long-term dynamic thinning that caused a grounded ice plain to reach flotation; and (c) SLE drainage and GL retreat were largely independent. We also discuss the possible origins and influence of a 27 km grounded promontory found to protrude seaward from the GL. Our observations demonstrate the importance of high-resolution satellite data for improving the process-based understanding of dynamic and complex regions around the Antarctic Ice Sheet margins.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 9","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JF007724","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142233186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信