{"title":"Gallic acid fermentation by metabolically engineered Escherichia coli producing p-hydroxybenzoate hydroxylase from Hylemonella gracilis NS1.","authors":"Nozomi Katsuki, Shunsuke Masuo, Noriyuki Nukui, Hajime Minakawa, Naoki Takaya","doi":"10.2323/jgam.2023.08.004","DOIUrl":"10.2323/jgam.2023.08.004","url":null,"abstract":"<p><p>Plant-derived phenolic gallic acid (GA) is an important raw material for antioxidants and food additives. Efforts to ferment GA using microbial processes have aimed at minimizing production costs and environmental load using enzymes that hydroxylate p-hydroxybenzoate and protocatechuate (PCA). Here, we found a p-hydroxybenzoate hydroxylase (PobA) in the bacterium Hylemonella gracilis NS1 (HgPobA) with 1.5-fold more hydroxylation activity than that from Pseudomonas aeruginosa PAO1 and thus converted PCA to GA more efficiently. The PCA hydroxylation activity of HgPobA was improved by introducing the amino acid substitutions L207V/Y393F or T302A/Y393F. These mutants had 2.9- and 3.7-fold lower K<sub>m</sub><sup>app</sup> for PCA than wild-type HgPobA. An Escherichia coli strain that reinforces shikimate pathway metabolism and produces HgPobA when cultured for 60 h generated 0.27 g L<sup>-1</sup> of GA. This is the first report of fermenting glucose to generate GA using a natural enzyme from the PobA family. The E. coli strain harboring the HgPobA L207V/Y393F mutant increased GA production to 0.56 g L<sup>-1</sup>. During the early stages of culture, GA was fermented at a 10-fold higher rate by a strain producing either HgPobA L207V/Y393F or T302A/Y393F compared with wild-type HgPobA, which agreed with the high k<sub>cat</sub><sup>app</sup>/K<sub>m</sub><sup>app</sup> PCA values of this mutant. We enhanced a PobA isozyme and its PCA hydroxylating function to efficiently and cost-effectively ferment GA.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":" ","pages":"301-308"},"PeriodicalIF":1.2,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10120794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jinming Liu, Shiyu Zhang, Haikun Ma, Jun Huang, Meichun Xiang, Xingzhong Liu
{"title":"Inhibition and biocontrol potential of Ochrobactrum pseudogrignonense NC1 against four Phytophthora species.","authors":"Jinming Liu, Shiyu Zhang, Haikun Ma, Jun Huang, Meichun Xiang, Xingzhong Liu","doi":"10.2323/jgam.2023.11.001","DOIUrl":"10.2323/jgam.2023.11.001","url":null,"abstract":"<p><p>Phytophthora species are highly destructive soilborne oomycetes pathogens that spread through infested soil and water. Ochrobactrum pseudogrignonense NC1 has been shown to inhibit plant parasitic nematodes via volatile organic compounds (VOCs). In this study, we investigated the inhibitory effect of O. pseudogrignonense NC1 against four Phytophthora species on agar plates and in vivo bioassay. We found that NC1 significantly inhibited the mycelial growth and zoospore production of all four species of Phytophthora in a dose-dependent manner. The half maximal inhibitory concentration (IC<sub>50</sub>) values for inhibition of mycelial growth (or zoospore production) were 26% (14.8%), 18.9% (14.2%), 20.3% (8.3%) and 46.9% (4%) for Phytophthora capsici Leonian, Phytophthora infestans, Phytophthora parasitica var. nicotiana and Phytophthora sojae, respectively. The biocontrol efficiency of NC1 was 46.3% in pepper seedlings against P. capsici, almost 100% in potato tubers against P. infestans, 60% in tomato leave against P. parasitica and 100% in soybean leave against P. sojae, respectively. Our findings suggest that O. pseudogrignonense NC1 has great potential as a biocontrol agent for managing Phytophthora diseases.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":" ","pages":"327-334"},"PeriodicalIF":1.2,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138291158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Geographical variation of bacterial and ciliophoran communities in tidal flats in a continental archipelago.","authors":"Yasutake Kawamoto, Jotaro Urabe","doi":"10.2323/jgam.2023.07.002","DOIUrl":"10.2323/jgam.2023.07.002","url":null,"abstract":"<p><p>In tidal flats, which are located at the transition zone between terrestrial and marine ecosystems, environmental factors such as temperature, sediment particle size, and tidal range exhibit geographic variation. Accordingly, the composition and structure of the microbial communities in the tidal flats are likely to vary in geographically different habitats. To clarify these differences with environmental factors causing them, we analyzed microbial communities consisting of bacteria and ciliates in sediments collected from nine tidal flats in geographical diverse region from Hokkaido to Kagoshima, Japan. The results confirmed that the community structures of bacteria and ciliophora in tidal flat sediments differed at the geographical scale of the Japanese archipelago. However, the variation could not be explained by the physical distance between the tidal flats nor by the differences in the trophic conditions among the tidal flats. Instead, the OTU richness of both the bacterial and ciliophoran communities was significantly related to the tidal range. The results also showed that bacteria and ciliophora tended to form similar communities among the tidal flats with similar median particle sizes. Furthermore, ciliophoran communities were similar among the tidal flats with similar bacterial communities. The results suggest that bacteria and ciliophora interact each other through trophic relationships or physical and chemical processes in the sediment habitats.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":" ","pages":"249-259"},"PeriodicalIF":1.2,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9837699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Identification and characterization of lignin depolymerization enzymes in Bacillus subtilis strain S11Y isolated from a tropical environment in Malaysia.","authors":"Fatimah Azizah Riyadi, Nadia Farhana Azman, Fazrena Nadia Md Akhir, Nor'azizi Othman, Hirofumi Hara","doi":"10.2323/jgam.2023.08.003","DOIUrl":"10.2323/jgam.2023.08.003","url":null,"abstract":"<p><p>Biological pretreatment using microbial enzymes appears to be the most promising pre-treatment technology for the breakdown of recalcitrant lignin structure. This research focuses on the identification and characterization of lignin-depolymerizing enzymes in Bacillus subtilis strain S11Y, previously isolated from palm oil wastes in Malaysia. The draft genome sequences of this highly lignin-depolymerizing strain revealed that the genome lacked any of the well-known dye-decolorizing peroxidase or catalase-peroxidase that are commonly reported to be involved in lignin depolymerization by bacteria, indicating that strain S11Y has distinct sets of potential lignin depolymerization genes. The oxidative stress-related enzymes Cu/Zn type-superoxide dismutase (Sod2) and a heme-containing monofunctional catalase (Kat2) were identified in the genome sequences that are of interest. Their lignin-depolymerizing ability were evaluated by treating Alkali lignin (AL) with each enzyme and their degradation ability were evaluated using gel-permeation chromatography (GPC), ultrahigh-pressure liquid chromatography-mass spectrometry (UHPLC/MS), and gas chromatography-mass spectrometry (GC/MS), which successfully proved lignin depolymerizing ability. Successful evaluation of lignin depolymerizing enzymes can be applicable for lignin pretreatment process in green energy production and generation of valuable chemicals in bio-refinery.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":" ","pages":"278-286"},"PeriodicalIF":1.2,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10049769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Construction of the Rhodobacter sphaeroides strain overproducing 5-aminolevulinic acid by insertion of endogenous promoter.","authors":"Takuma Kojima, Shinji Masuda","doi":"10.2323/jgam.2023.07.004","DOIUrl":"10.2323/jgam.2023.07.004","url":null,"abstract":"<p><p>5-Aminolevulinic acid (ALA) is a precursor of heme and a natural amino acid synthesized in the cells of most living organisms. Currently, ALA is used as an ingredient in pharmaceuticals, supplements, cosmetics, feed, fertilizers, and other products. ALA is mainly produced by industrial fermentation by the photosynthetic bacterium Rhodobacter sphaeroides. In this study, we tried to improve the ALA productivity by R. sphaeroides using a genetic strategy to highly express ALA synthase (ALAS) genes. We inserted a constitutive promoter (P<sub>rrnB</sub> or P<sub>rsp_7571</sub>) upstream of genes encoding ALAS (hemA and/or hemT) to construct strains that constitutively express ALAS. The highest transcript levels of hemA were observed in the strain where P<sub>rrnB</sub> was inserted into the hemA promoter region and were 3.5-fold higher than those in the wild-type. The highest transcript levels of hemT were observed in the strain where P<sub>rrnB</sub> was inserted into the hemT promoter region and were 46-fold higher than those in the wild-type. The maximum ALAS activity was observed in crude cell extracts of the strain where P<sub>rrnB</sub> was inserted into the hemT promoter region under optimized growth conditions that was 2.7-fold higher than that in the wild type. This strain showed 12-fold accumulation of ALA compared to the wild-type. Thus, we improved ALA productivity without using exogenous DNA sequences. In the future, further improvement in ALA productivity may be expected by applying this approach to current industrial ALA-producing bacteria.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":" ","pages":"270-277"},"PeriodicalIF":1.2,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9860264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ikki Kobayashi, Sousuke Imamura, Ryuichi Hirota, Akio Kuroda, Kan Tanaka
{"title":"Expression of bacterial phosphite dehydrogenase confers phosphite availability in a unicellular red alga Cyanidioschyzon merolae.","authors":"Ikki Kobayashi, Sousuke Imamura, Ryuichi Hirota, Akio Kuroda, Kan Tanaka","doi":"10.2323/jgam.2023.08.002","DOIUrl":"10.2323/jgam.2023.08.002","url":null,"abstract":"<p><p> Microalgae are promising cell factories for producing value-added products. Large-scale microalgal cultivation suffers from invasion by contaminating microorganisms. Since most contaminating organisms cannot utilize phosphite as a unique phosphorus source, phosphite-utilizing ability may provide a growth advantage against contaminating organisms and solve this problem. Studies showed that microorganisms, typically unable to metabolize phosphite, can utilize phosphite by expressing exogenous phosphite dehydrogenase. Here, we constructed Cyanidioschyzon merolae strains introduced with the phosphite dehydrogenase gene, ptxD, from Ralstonia sp. 4506. The ptxD-introduced strains grew in a phosphite-dependent manner, with the phosphite-related growth rate almost matching that with phosphate as sole phosphorus source.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":" ","pages":"287-291"},"PeriodicalIF":1.2,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10367828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Subcomponents in humic acid structure contribute to the differential responses of Aspergillus oryzae strains to humic acid.","authors":"Liyun Liu, Kanae Sakai, Takumi Tanaka, Ken-Ichi Kusumoto","doi":"10.2323/jgam.2023.07.003","DOIUrl":"10.2323/jgam.2023.07.003","url":null,"abstract":"<p><p>Humic acid (HA) is a complex natural organic macromolecule, can be decomposed to low-molecular compounds by some soil fungi and then influences the growth of fungi. Aspergillus oryzae is a fungus domesticated from its ancestor, which was supposed to live in soil. Group 3 strains of A. oryzae hold fewer aflatoxin-biosynthetic genes than group 1 strains and may differently response to HA because of the deletion of some genes along with the domestication. However, effect of HA on growth of A. oryzae group 1 and group 3 strains remains unclear. In this study, four strains of A. oryzae in group 1 and four in group 3 were point inoculated on equivalent medium (pH 7.3) with two commercially available HAs. The growth of RIB40 was the most stimulated among group 1 strains and that of RIB143 was the most inhibited among group 3 strains. To identify the basis of these differences, we examined the possible effects of HA subcomponents including polyphenol and minerals on the growth of RIB40 and RIB143. Polyphenol represented by gallic acid (GA), a partial structure common with model HA, and mineral ions including Al <sup>3+</sup> , Ca <sup>2+</sup> , Ti <sup>4+</sup> , Mn <sup>2+</sup> , Sr <sup>2+</sup> , and Ba<sup>2+</sup> contributed to stimulating the growth of RIB40, whereas these components generally did not affect the growth of RIB143. Thus, our findings indicate that the sub-compositions of HAs, including GA and several minerals, were the main factors driving the different responses of RIB40 and RIB143 to HAs.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":" ","pages":"260-269"},"PeriodicalIF":1.2,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9837698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Indole inhibited the expression of csrA gene in Escherichia coli.","authors":"Jing Zheng, Guocai Zuo, Zhiguo Zhou, Zhenxia Shi, Huiying Guo, Zemin Sun, Yongjun Feng","doi":"10.2323/jgam.2023.06.007","DOIUrl":"10.2323/jgam.2023.06.007","url":null,"abstract":"<p><p>Indole is a very important signal molecule which plays multiple regulatory roles in many physiological and biochemical processes of bacteria, but up to now, the reasons for its wide range of functions have not been revealed. In this study, we found that indole inhibits the motility, promotes glycogen accumulation and enhances starvation resistance of Escherichia coli. However, the regulatory effects of indole became insignificant while the global csrA gene was mutated. To reveal the regulatory relationship between indole and csrA, we studied the effects of indole on the transcription level of csrA, flhDC, glgCAP and cstA, and also the sensing of the promoters of the genes on indole. It was found that indole inhibited the transcription of csrA, and only the promoter of the csrA gene can sense indole. Namely, indole indirectly regulated the translation level of FlhDC, GlgCAP and CstA. These data indicates that indole regulation is related with the regulation of CsrA, which may throw light on the regulation mechanism research of indole.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":" ","pages":"239-248"},"PeriodicalIF":1.2,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9766600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Screening for termination sequences of a rolling-circle plasmid: a novel scheme using genomic DNA.","authors":"Ryo Hanai, Kazuya Hosono","doi":"10.2323/jgam.2023.04.001","DOIUrl":"10.2323/jgam.2023.04.001","url":null,"abstract":"<p><p>The Escherichia coli genome was searched for potential terminators of the rolling-circle replication of staphylococcal plasmid pC194. The replication origin of pC194 was randomly inserted into the E. coli chromosome and rolling-circle replication was initiated by producing pC194's replication protein from a plasmid. Circular DNA resulting from termination in the chromosome was recovered from 42 of the 100 insertion clones screened. The nucleotide sequences at the ends of the chromosomal segment in the recovered DNA were determined and used to identify the locus of integration and the point of termination. The sequence beyond the termination point was retrieved from the database. This information would have been unrecoverable if synthetic random sequences had been used for screening. The consensus sequence based on the discovered potential terminators was consistent with the results of previous and new experiments. The recovered circular DNAs contain a hybrid origin consisting of a 5' part derived from the chromosomal DNA and a 3' part of the integrated origin. Two such hybrid origins were examined for initiation function and shown to be as effective as the authentic pC194 origin. These results suggest a possible evolutionary mechanism in which a rolling-circle plasmid may acquire genes from the host organism.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":" ","pages":"196-205"},"PeriodicalIF":1.2,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9414538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Identification of an arginine transporter in Candida glabrata.","authors":"Akira Nishimura, Ryoya Tanahashi, Kazuki Nakagami, Yuto Morioka, Hiroshi Takagi","doi":"10.2323/jgam.2023.03.003","DOIUrl":"10.2323/jgam.2023.03.003","url":null,"abstract":"<p><p>Arginine is a proteinogenic amino acid that organisms additionally exploit both for nitrogen storage and as a stress protectant. The location of arginine, whether intra- or extracellular, is important in maintaining physiological homeostasis. Here, we identified an arginine transporter ortholog of the emerging fungal pathogenic Candida glabrata. Blast searches revealed that the C. glabrata genome contains two potential orthologs of the Saccharomyces cerevisiae arginine transporter gene CAN1 (CAGL0J08162g and CAGL0J08184g). We then found that CAGL0J08162g is stably located on the plasma membrane and performs cellular uptake of arginine. Moreover, CAGL0J08162-disrupted cells of C. glabrata showed a partial resistance to canavanine, a toxic analog of arginine. Our data suggest that CAGL0J08162g is a key arginine transporter in the pathogenic C. glabrata (CgCan1).</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":" ","pages":"229-233"},"PeriodicalIF":1.2,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9234455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}