Journal of General and Applied Microbiology最新文献

筛选
英文 中文
Artificial activation of both σH and Spo0A in Bacillus subtilis enforced initiation of spore development at the vegetatively growing phase. 人工激活枯草芽孢杆菌中的σH和Spo0A,可在无性生殖阶段启动孢子发育。
IF 1.2 4区 生物学
Journal of General and Applied Microbiology Pub Date : 2024-02-02 Epub Date: 2023-06-29 DOI: 10.2323/jgam.2023.06.004
Tomomitsu Karaki, Ai Sunaga, Yasuhiro Takahashi, Kei Asai
{"title":"Artificial activation of both σ<sup>H</sup> and Spo0A in Bacillus subtilis enforced initiation of spore development at the vegetatively growing phase.","authors":"Tomomitsu Karaki, Ai Sunaga, Yasuhiro Takahashi, Kei Asai","doi":"10.2323/jgam.2023.06.004","DOIUrl":"10.2323/jgam.2023.06.004","url":null,"abstract":"<p><p>When Bacillus subtilis cells face environmental deterioration, such as exhaustion of nutrients and an increase in cell density, they form spores. It is known that phosphorylation of Spo0A and activation of σ<sup>H</sup> are key events at the initiation of sporulation. However, the initiation of sporulation is an extremely complicated process, and the relationship between these two events remains to be elucidated. To determine the minimum requirements for triggering sporulation initiation, we attempted to induce cell sporulation at the log phase, regardless of nutrients and cell density. In rich media such as Luria-Bertani (LB) medium, the cells of B. subtilis do not sporulate efficiently, possibly because of excess nutrition. When the amount of xylose in the LB medium was limited, σ<sup>H</sup> -dependent transcription of the strain, in which sigA was under the control of the xylose-inducible promoter, was induced, and the frequency of sporulation was elevated according to the decreased level of σ<sup>A</sup>. We also employed a fusion of sad67, which codes for an active form of Spo0A, and the IPTG-inducible promoter. The combination of lowered σ<sup>A</sup> expression and activated Spo0A allowed the cells in the log phase to stop growing and rush into spore development. This observation of enforced initiation of sporulation in the mutant strain was detected even in the presence of the wild-type strain, suggesting that only intracellular events initiate and fulfill spore development regardless of extracellular conditions. Under natural sporulation conditions, the amount of σ<sup>A</sup> did not change drastically throughout growth. Mechanisms that sequester σ<sup>A</sup> from the core RNA polymerase and help σ<sup>H</sup> to become active exist, but this has not yet been elucidated.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":" ","pages":"215-228"},"PeriodicalIF":1.2,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9748688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of n-butanol production on metabolism and the photosystem in Synecococcus elongatus PCC 7942 based on metabolic flux and target proteome analyses. 基于代谢通量和目标蛋白质组分析的正丁醇生产对 Synecococcus elongatus PCC 7942 的新陈代谢和光合系统的影响。
IF 1.2 4区 生物学
Journal of General and Applied Microbiology Pub Date : 2024-02-02 Epub Date: 2023-03-20 DOI: 10.2323/jgam.2023.03.002
Keisuke Wada, Kiyoka Uebayashi, Yoshihiro Toya, Sastia Prama Putri, Fumio Matsuda, Eiichiro Fukusaki, James C Liao, Hiroshi Shimizu
{"title":"Effects of n-butanol production on metabolism and the photosystem in Synecococcus elongatus PCC 7942 based on metabolic flux and target proteome analyses.","authors":"Keisuke Wada, Kiyoka Uebayashi, Yoshihiro Toya, Sastia Prama Putri, Fumio Matsuda, Eiichiro Fukusaki, James C Liao, Hiroshi Shimizu","doi":"10.2323/jgam.2023.03.002","DOIUrl":"10.2323/jgam.2023.03.002","url":null,"abstract":"<p><p>Although n-butanol (BuOH) is an ideal fuel because of its superior physical properties, it has toxicity to microbes. Previously, a Synechococcus elongatus PCC 7942 derivative strain that produces BuOH from CO<sub>2</sub> was developed by introducing six heterologous genes (BUOH-SE strain). To identify the bottleneck in BuOH production, the effects of BuOH production and its toxicity on central metabolism and the photosystem were investigated. Parental (WT) and BUOH-SE strains were cultured under autotrophic conditions. Consistent with the results of a previous study, BuOH production was observed only in the BUOH-SE strain. Isotopically non-stationary <sup>13</sup>C-metabolic flux analysis revealed that the CO<sub>2</sub> fixation rate was much larger than the BuOH production rate in the BUOH-SE strain (1.70 vs 0.03 mmol gDCW<sup>-1</sup> h<sup>-1</sup>), implying that the carbon flow for BuOH biosynthesis was less affected by the entire flux distribution. No large difference was observed in the flux of metabolism between the WT and BUOH-SE strains. Contrastingly, in the photosystem, the chlorophyll content and maximum O<sub>2</sub> evolution rate per dry cell weight of the BUOH-SE strain were decreased to 81% and 43% of the WT strain, respectively. Target proteome analysis revealed that the amounts of some proteins related to antennae (ApcA, ApcD, ApcE, and CpcC), photosystem II (PsbB, PsbU, and Psb28-2), and cytochrome b<sub>6</sub>f complex (PetB and PetC) in photosystems decreased in the BUOH-SE strain. The activation of photosynthesis would be a novel approach for further enhancing BuOH production in S. elongatus PCC 7942.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":" ","pages":"185-195"},"PeriodicalIF":1.2,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9133419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enzyme immobilization on α-1,3-glucan: development of flow reactor with fusion protein of α-1,3-glucan binding domains and histamine dehydrogenase. 在α-1,3-葡聚糖上固定酶:利用α-1,3-葡聚糖结合域和组胺脱氢酶的融合蛋白开发流动反应器。
IF 1.2 4区 生物学
Journal of General and Applied Microbiology Pub Date : 2024-02-02 Epub Date: 2023-05-16 DOI: 10.2323/jgam.2023.04.002
Yuta Nagahashi, Kazuki Hasegawa, Kazuyoshi Takagi, Shigekazu Yano
{"title":"Enzyme immobilization on α-1,3-glucan: development of flow reactor with fusion protein of α-1,3-glucan binding domains and histamine dehydrogenase.","authors":"Yuta Nagahashi, Kazuki Hasegawa, Kazuyoshi Takagi, Shigekazu Yano","doi":"10.2323/jgam.2023.04.002","DOIUrl":"10.2323/jgam.2023.04.002","url":null,"abstract":"<p><p>α-1,3-Glucanase Agl-KA from Bacillus circulans KA-304 consists of a discoidin domain (DS1), a carbohydrate binding module family 6 (CBM6), a threonine-proline-rich-linker (TP linker), a discoidin domain (DS2), an uncharacterized domain, and a catalytic domain. The binding of DS1, CBM6, and DS2 to α-1,3-glucan can be improved in the presence of two of these three domains. In this study, DS1, CBM6, and TP linker were genetically fused to histamine dehydrogenase (HmDH) from Nocardioides simplex NBRC 12069. The fusion enzyme, AGBDs-HmDH, was expressed in Escherichia coli Rosetta 2 (DE3) and purified from the cell-free extract. AGBDs-HmDH bound to 1% micro-particle of α-1,3-glucan (diameter: less than 1 μm) and 7.5% coarse-particle of α-1,3-glucan (less than 200 μm) at about 97 % and 70% of the initial amounts of the enzyme, respectively. A reactor for flow injection analysis filled with AGBDs-HmDH immobilized on the coarse-particle of α-1,3-glucan was successfully applied to determine histamine. A linear calibration curve was observed in the range for about 0.1 to 3.0 mM histamine. These findings suggest that the combination of α-1,3-glucan and α-1,3-glucan binding domains is a candidate for novel enzyme immobilization.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":" ","pages":"206-214"},"PeriodicalIF":1.2,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9833400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic effect of secondary metabolites isolated from Pestalotiopsis sp. FKR-0115 in overcoming β-lactam resistance in MRSA. 从Pestalotiopsis sp.FKR-0115中分离出的次生代谢物在克服MRSA对β-内酰胺耐药性方面的协同作用。
IF 1.2 4区 生物学
Journal of General and Applied Microbiology Pub Date : 2024-02-02 Epub Date: 2023-06-10 DOI: 10.2323/jgam.2023.06.001
Kanako Taba, Masako Honsho, Yukihiro Asami, Hiromu Iwasaki, Kenichi Nonaka, Yoshihiro Watanabe, Masato Iwatsuki, Hidehito Matsui, Hideaki Hanaki, Toshiaki Teruya, Takahiro Ishii
{"title":"Synergistic effect of secondary metabolites isolated from Pestalotiopsis sp. FKR-0115 in overcoming β-lactam resistance in MRSA.","authors":"Kanako Taba, Masako Honsho, Yukihiro Asami, Hiromu Iwasaki, Kenichi Nonaka, Yoshihiro Watanabe, Masato Iwatsuki, Hidehito Matsui, Hideaki Hanaki, Toshiaki Teruya, Takahiro Ishii","doi":"10.2323/jgam.2023.06.001","DOIUrl":"10.2323/jgam.2023.06.001","url":null,"abstract":"<p><p>Six aromatic secondary metabolites, pestalone (1), emodin (2), phomopsilactone (3), pestalachlorides B (4), C (5), and D (6), were isolated from Pestalotiopsis sp. FKR-0115, a filamentous fungus collected from white moulds growing on dead branches in Minami Daito Island. The efficacy of these secondary metabolites against methicillin-resistant Staphylococcus aureus (MRSA) with and without meropenem (β-lactam antibiotic) was evaluated using the paper disc method and broth microdilution method. The chemical structures of the isolated compounds (1-6) were characterised using spectroscopic methods, including nuclear magnetic resonance and mass spectrometry. All six isolated compounds exhibited synergistic activity with meropenem against MRSA. Among the six secondary metabolites, pestalone (1) overcame bacterial resistance in MRSA to the greatest extent.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":" ","pages":"234-238"},"PeriodicalIF":1.2,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9617675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TrLys9 participates in fungal development and lysine biosynthesis in Trichoderma reesei. TrLys9参与里氏木霉的真菌发育和赖氨酸的生物合成。
IF 1.2 4区 生物学
Journal of General and Applied Microbiology Pub Date : 2023-12-05 Epub Date: 2023-02-17 DOI: 10.2323/jgam.2023.01.002
Jinling Lan, Lin Zhang, Jie Gao, Ronglin He
{"title":"TrLys9 participates in fungal development and lysine biosynthesis in Trichoderma reesei.","authors":"Jinling Lan, Lin Zhang, Jie Gao, Ronglin He","doi":"10.2323/jgam.2023.01.002","DOIUrl":"10.2323/jgam.2023.01.002","url":null,"abstract":"<p><p>Fungi uniquely synthesize lysine through the α-aminoadipate pathway. The saccharopine reductase ScLys9 catalyzes the formation of saccharopine from ɑ-aminoadipate 6-semialdehyde, the seventh step in the lysine biosynthesis pathway in Saccharomyces cerevisiae. Here, we characterized the functions of TrLys9, an ortholog of S. cerevisiae ScLys9 in the industrial filamentous fungus Trichoderma reesei. Transcriptional level analysis indicated that TrLYS9 expression was higher in the conidial stage than in other stages. Disruption of TrLYS9 led to lysine auxotrophy. Phenotype analysis of the ΔTrlys9 mutant showed that TrLYS9 was involved in fungal development including vegetative growth, conidiation, and conidial germination and lysine biosynthesis. Cellulase production was also impaired in the ΔTrlys9 mutant due to the failure of conidial germination in liquid cellulase-inducing medium. Defects in radial growth and asexual development of the ΔTrlys9 mutant were fully recovered when exogenous lysine was added to the medium. These results imply that TrLys9 is involved in fungal development and lysine biosynthesis in T. reesei.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":" ","pages":"159-166"},"PeriodicalIF":1.2,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10757885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative analysis of glyceroglycolipids from Lactiplantibacillus pentosus and other Lactiplantibacillus species. 戊糖乳杆菌与其他乳杆菌甘油三酯的比较分析。
IF 1.2 4区 生物学
Journal of General and Applied Microbiology Pub Date : 2023-12-05 Epub Date: 2022-12-08 DOI: 10.2323/jgam.2022.12.001
Ayako Kuri, Hirokazu Iida, Kazuyoshi Kawahara
{"title":"Comparative analysis of glyceroglycolipids from Lactiplantibacillus pentosus and other Lactiplantibacillus species.","authors":"Ayako Kuri, Hirokazu Iida, Kazuyoshi Kawahara","doi":"10.2323/jgam.2022.12.001","DOIUrl":"10.2323/jgam.2022.12.001","url":null,"abstract":"<p><p>Cellular lipids of Lactiplantibacillus species were extracted and neutral glyceroglycolipids (GGLs) were purified, and analyzed by thin-layer chromatography (TLC). Four GGLs with known structures were detected in GGL preparation of L. plantarum, and the same GGL profiles of TLC were observed for all other strains of Lactiplantibacillus species examined, suggesting that the GGL profile could be one of the chemotaxonomic characters of the genus Lactiplantibacillus. On the other hand, the quantity of each GGL showed some variation among species, and L. pentosus was found to have higher proportion of disaccharide-type GGL, designated GGL-3 in this study, compared with other species including L. plantarum. The quantitative difference of GGL-3 found in this study could be regarded as the characteristics of L. pentosus. The carbohydrate structure of L. pentosus GGL-3 was precisely analyzed by <sup>1</sup>H NMR and methylation analysis, and the structure was confirmed to be αGal-(1→2)-αGlc-diacylglycerol, with the carbohydrate structure identical to that of L. plantarum, although fatty acid composition of the two GGL-3 showed some difference.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":" ","pages":"135-141"},"PeriodicalIF":1.2,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10370805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of three γ-glutamyltranspeptidases from Pseudomonas aeruginosa PAO1. 铜绿假单胞菌PAO1中三个γ-谷氨酰转肽酶的鉴定
IF 1.2 4区 生物学
Journal of General and Applied Microbiology Pub Date : 2023-12-05 Epub Date: 2023-01-18 DOI: 10.2323/jgam.2023.01.001
Yuuki Nonomura, Xinjia Wang, Takeshi Kikuchi, Daisuke Matsui, Yosuke Toyotake, Kazuyoshi Takagi, Mamoru Wakayama
{"title":"Characterization of three γ-glutamyltranspeptidases from Pseudomonas aeruginosa PAO1.","authors":"Yuuki Nonomura, Xinjia Wang, Takeshi Kikuchi, Daisuke Matsui, Yosuke Toyotake, Kazuyoshi Takagi, Mamoru Wakayama","doi":"10.2323/jgam.2023.01.001","DOIUrl":"10.2323/jgam.2023.01.001","url":null,"abstract":"<p><p>The Pseudomonas aeruginosa strain, PAO1, has three putative γ-glutamyltranspeptidase (GGT) genes: ggtI, ggtII, and ggtIII. In this study, the expression of each of these genes in P. aeruginosa PAO1 was analyzed, and the properties of the corresponding GGT proteins were investigated. This is the first report on biochemical characterization of GGT paralogs from Pseudomonas species. The crude extracts prepared from P. aeruginosa PAO1 exhibited hydrolysis and transpeptidation activities of 17.3 and 65.0 mU/mg, respectively, and the transcription of each gene to mRNA was confirmed by RT-PCR. All genes were cloned, and the expression plasmids constructed were introduced into an Escherichia coli expression system. Enzyme activity of the expressed protein of ggtI (PaGGTI) was not detected in the system, while the enzyme activities of the expressed proteins derived from ggtII and ggtIII (PaGGTII and PaGGTIII, respectively) were detected. However, the enzyme activity of PaGGTII was very low and easily decreased. PaGGTII with C-terminal his-tag (PaGGTII25aa) showed increased activity and stability, and the purified enzyme consisted of a large subunit of 40 kDa and a small subunit of 28 kDa. PaGGTIII consisted of a large subunit of 37 kDa and a small subunit of 24 kDa. The maximum hydrolysis and transpeptidation activities of PaGGTII25aa were obtained at 40ºC-50ºC, and the maximum hydrolysis and transpeptidation activities of PaGGTIII were obtained at 50ºC-60ºC. These enzymes retained approximately 80% of their hydrolysis and transpeptidation activities after incubation at 50ºC for 10 min, reflecting good stability. Both PaGGTII25aa and PaGGTIII showed higher activities of hydrolysis and transpeptidation in the alkali range than in the acidic range. However, they were highly stable at a wide pH range (5-10.5).</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":" ","pages":"150-158"},"PeriodicalIF":1.2,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10599088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Bacillus velezensis S141, a soybean growth-promoting bacterium, hydrolyzes isoflavone glycosides into aglycones. velezensis S141是一种促进大豆生长的细菌,它能将异黄酮苷水解成苷元。
IF 1.2 4区 生物学
Journal of General and Applied Microbiology Pub Date : 2023-12-05 Epub Date: 2023-02-28 DOI: 10.2323/jgam.2023.02.002
Takahiko Kondo, Surachat Sibponkrung, Ken-Yu Hironao, Panlada Tittabutr, Nantakorn Boonkerd, Shu Ishikawa, Hitoshi Ashida, Neung Teaumroong, Ken-Ichi Yoshida
{"title":"Bacillus velezensis S141, a soybean growth-promoting bacterium, hydrolyzes isoflavone glycosides into aglycones.","authors":"Takahiko Kondo, Surachat Sibponkrung, Ken-Yu Hironao, Panlada Tittabutr, Nantakorn Boonkerd, Shu Ishikawa, Hitoshi Ashida, Neung Teaumroong, Ken-Ichi Yoshida","doi":"10.2323/jgam.2023.02.002","DOIUrl":"10.2323/jgam.2023.02.002","url":null,"abstract":"<p><p>Bacillus velezensis S141, a plant growth-promoting rhizobacteria (PGPR), was isolated from a soybean field in Thailand. Previous studies demonstrated that S141 enhanced soybean growth, stimulating nodulation for symbiotic nitrogen fixation with soybean root nodule bacteria, including Bradyrhizobium diazoefficience USDA110. Isoflavone glycosides are produced in soybean roots and hydrolyzed into their aglycones, triggering nodulation. This study revealed that S141 efficiently hydrolyzed two isoflavone glycosides in soybean roots (daidzin and genistin) to their aglycones (daidzein and genistein, respectively). However, S141, Bacillus subtilis 168, NCIB3610, and B. velezensis FZB42 hydrolyzed isoflavone glucosides into aglycones. A BLASTp search suggested that S141 and the other three strains shared four genes encoding β-glucosidases corresponding to bglA, bglC, bglH, and gmuD in B. subtilis 168. The gene inactivation analysis of B. subtilis 168 revealed that bglC encoded the major β-glucosidase, contributing about half of the total activity to hydrolyze isoflavone glycosides and that bglA, bglH, and gmuD, all barely committed to the hydrolysis of isoflavone glycosides. Thus, an unknown β-glucosidase exists, and our genetic knowledge of β-glucosidases was insufficient to evaluate the ability to hydrolyze isoflavone glycosides. Nevertheless, S141 could predominate in the soybean rhizosphere, releasing isoflavone aglycones to enhance soybean nodulation.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":" ","pages":"175-183"},"PeriodicalIF":1.2,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9379653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A high-temperature sensitivity of Synechococcus elongatus PCC 7942 due to a tRNA-Leu mutation. 长聚球菌PCC 7942因tRNA-Leu突变而对高温敏感。
IF 1.2 4区 生物学
Journal of General and Applied Microbiology Pub Date : 2023-12-05 Epub Date: 2023-02-17 DOI: 10.2323/jgam.2023.02.001
Hazuki Hasegawa, Yu Kanesaki, Satoru Watanabe, Kan Tanaka
{"title":"A high-temperature sensitivity of Synechococcus elongatus PCC 7942 due to a tRNA-Leu mutation.","authors":"Hazuki Hasegawa, Yu Kanesaki, Satoru Watanabe, Kan Tanaka","doi":"10.2323/jgam.2023.02.001","DOIUrl":"10.2323/jgam.2023.02.001","url":null,"abstract":"<p><p>Certain mutations of the model cyanobacterium Synechococcus elongatus PCC 7942 during laboratory storage have resulted in some divergent phenotypes. One laboratory-stored strain (H1) shows a temperature-sensitive (ts) growth phenotype at 40 °C. Here, we investigated the reason for this temperature sensitivity. Whole genome sequencing of H1 identified a single nucleotide mutation in synpcc7942_R0040 encoding tRNA-Leu(CAA). The mutation decreases the length of the tRNA-Leu t-arm from 5 to 4 base pairs, and this explains the ts phenotype. Secondary mutations suppressing the ts phenotype were identified in synpcc7942_1640, which putatively encodes a NYN domain-containing protein (nynA). The NYN domain is thought to be involved in tRNA/rRNA degradation. Thus, the structural stability of tRNA-Leu is critical for growth at 40 °C in Synechococcus elongatus PCC 7942.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":" ","pages":"167-174"},"PeriodicalIF":1.2,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10757884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel transporter screening technology for chemical production by microbial fermentation. 微生物发酵化工生产转运体筛选新技术。
IF 1.2 4区 生物学
Journal of General and Applied Microbiology Pub Date : 2023-12-05 Epub Date: 2022-12-25 DOI: 10.2323/jgam.2022.12.002
Kei Nanatani, Tomoko Ishii, Ayumu Masuda, Satoshi Katsube, Tasuke Ando, Hiroshi Yoneyama, Keietsu Abe
{"title":"Novel transporter screening technology for chemical production by microbial fermentation.","authors":"Kei Nanatani, Tomoko Ishii, Ayumu Masuda, Satoshi Katsube, Tasuke Ando, Hiroshi Yoneyama, Keietsu Abe","doi":"10.2323/jgam.2022.12.002","DOIUrl":"10.2323/jgam.2022.12.002","url":null,"abstract":"<p><p>In the fermentative production of compounds by using microorganisms, control of the transporter activity responsible for substrate uptake and product efflux, in addition to intracellular metabolic modification, is important from a productivity perspective. However, there has been little progress in analyses of the functions of microbial membrane transporters, and because of the difficulty in finding transporters that transport target compounds, only a few transporters have been put to practical use. Here, we constructed a Corynebacterium glutamicum-derived transporter expression library (CgTP-Express library) with the fusion partner gene mstX and used a peptide-feeding method with the dipeptide L-Ala-L-Ala to search for alanine exporters in the library. Among 39 genes in the library, five candidate alanine exporters (NCgl2533, NCgl2683, NCgl0986, NCgl0453, and NCgl0929) were found; expression of NCgl2533 increased the alanine concentration in cell culture. The CgTP-Express library was thus effective for finding a new transporter candidate.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":" ","pages":"142-149"},"PeriodicalIF":1.2,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10430350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信