Journal of Function Spaces最新文献

筛选
英文 中文
Locating Edge Domination Number of Some Classes of Claw-Free Cubic Graphs 确定几类无爪立方图的边缘支配数
IF 1.9 3区 数学
Journal of Function Spaces Pub Date : 2024-02-29 DOI: 10.1155/2024/1182858
Muhammad Shoaib Sardar, Hamna Choudhry, Jia-Bao Liu
{"title":"Locating Edge Domination Number of Some Classes of Claw-Free Cubic Graphs","authors":"Muhammad Shoaib Sardar, Hamna Choudhry, Jia-Bao Liu","doi":"10.1155/2024/1182858","DOIUrl":"https://doi.org/10.1155/2024/1182858","url":null,"abstract":"Let <span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 20.155 11.5564\" width=\"20.155pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,12.524,0)\"></path></g></svg><span></span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"23.7371838 -9.28833 14.99 11.5564\" width=\"14.99pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,23.787,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,28.285,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,35.813,0)\"></path></g></svg><span></span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"40.9061838 -9.28833 12.769 11.5564\" width=\"12.769pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,40.956,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,48.964,0)\"></path></g></svg></span> be a simple graph with vertex set <svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 9.35121 8.8423\" width=\"9.35121pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-87\"></use></g></svg> and edge set <span><svg height=\"8.68572pt\" style=\"vertical-align:-0.0498209pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 8.13765 8.68572\" width=\"8.13765pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-70\"></use></g></svg>.</span> In a graph <span><svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 9.02496 8.8423\" width=\"9.02496pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-72\"></use></g></svg>,</span> a subset of edges denoted by <svg height=\"9.09021pt\" style=\"vertical-align:-0.2455397pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.84467 14.0879 9.09021\" width=\"14.0879pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg> is referred to as an edge-dominating set of <svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 9.02496 8.8423\" width=\"9.02496pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-72\"></use></g></svg> if every edge that is not in <svg height=\"9.09021pt\" style=\"vertical-align:-0.2455397pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.84467 14.0879 9.09021\" width=\"14.0879pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=","PeriodicalId":15840,"journal":{"name":"Journal of Function Spaces","volume":"3 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140002784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Naimark-Type Results Using Frames 使用帧的奈马克式结果
IF 1.9 3区 数学
Journal of Function Spaces Pub Date : 2024-02-22 DOI: 10.1155/2024/8588361
Raksha Sharma, Nikhil Khanna
{"title":"Naimark-Type Results Using Frames","authors":"Raksha Sharma, Nikhil Khanna","doi":"10.1155/2024/8588361","DOIUrl":"https://doi.org/10.1155/2024/8588361","url":null,"abstract":"In this article, a modified version of frame called frame associated with a sequence of scalars (FASS) is defined. This modified version of frame is used to study quantum measurements. Also, using FASS, some Naimark-type results are obtained. Finally, a formula to give the average probability of an incorrect measurement using FASS is obtained.","PeriodicalId":15840,"journal":{"name":"Journal of Function Spaces","volume":"70 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139920474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A New Method for Estimating General Coefficients to Classes of Bi-univalent Functions 估算双等价函数类一般系数的新方法
IF 1.9 3区 数学
Journal of Function Spaces Pub Date : 2024-02-15 DOI: 10.1155/2024/9889253
Oqlah Al-Refai, Ala Amourah, Tariq Al-Hawary, Basem Aref Frasin
{"title":"A New Method for Estimating General Coefficients to Classes of Bi-univalent Functions","authors":"Oqlah Al-Refai, Ala Amourah, Tariq Al-Hawary, Basem Aref Frasin","doi":"10.1155/2024/9889253","DOIUrl":"https://doi.org/10.1155/2024/9889253","url":null,"abstract":"This study establishes a new method to investigate bounds of <span><svg height=\"12.5794pt\" style=\"vertical-align:-3.29107pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 18.1261 12.5794\" width=\"18.1261pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,3.419,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,9.412,3.132)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,14.559,0)\"><use xlink:href=\"#g113-9\"></use></g></svg>;</span> <span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 22.3 11.5564\" width=\"22.3pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,4.498,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,14.669,0)\"></path></g></svg><span></span><span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"25.8821838 -9.28833 11.235 11.5564\" width=\"11.235pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,25.932,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,32.458,0)\"></path></g></svg>,</span></span> for certain general classes of bi-univalent functions. The results include a number of improvements and generalizations for well-known estimations. We also discuss bounds of <svg height=\"15.535pt\" style=\"vertical-align:-3.9436pt\" version=\"1.1\" viewbox=\"-0.0498162 -11.5914 64.2012 15.535\" width=\"64.2012pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-9\"></use></g><g transform=\"matrix(.013,0,0,-0.013,3.419,0)\"><use xlink:href=\"#g113-111\"></use></g><g transform=\"matrix(.013,0,0,-0.013,9.945,0)\"><use xlink:href=\"#g113-98\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,16.525,-5.741)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,15.938,3.784)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,24.377,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,34.914,0)\"><use xlink:href=\"#g113-98\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,40.907,3.132)\"><use xlink:href=\"#g50-51\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,45.339,3.132)\"><use xlink:href=\"#g50-111\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,49.998,3.132)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,55.558,3.132)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,60.559,0)\"><use xlink:href=\"#g113-9\"></use></g></svg> and consider several corollaries, remarks, and consequences of the results presented in this paper.","PeriodicalId":15840,"journal":{"name":"Journal of Function Spaces","volume":"130 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139764124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solvability of a Hadamard Fractional Boundary Value Problem at Resonance on Infinite Domain 无限域上共振时 Hadamard 分式边界问题的可解性
IF 1.9 3区 数学
Journal of Function Spaces Pub Date : 2024-01-23 DOI: 10.1155/2024/5554742
Xingfang Feng, Yucheng Li
{"title":"Solvability of a Hadamard Fractional Boundary Value Problem at Resonance on Infinite Domain","authors":"Xingfang Feng, Yucheng Li","doi":"10.1155/2024/5554742","DOIUrl":"https://doi.org/10.1155/2024/5554742","url":null,"abstract":"This paper investigates the existence of solutions for Hadamard fractional differential equations with integral boundary conditions at resonance on infinite domain. By constructing two suitable Banach spaces, establishing an appropriate compactness criterion, and defining appropriate projectors, we study an existence theorem upon the coincidence degree theory of Mawhin. An example is given to illustrate our main result.","PeriodicalId":15840,"journal":{"name":"Journal of Function Spaces","volume":"34 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139556485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inclusion Properties for Classes of -Valent Functions 幂函数类的包含特性
IF 1.9 3区 数学
Journal of Function Spaces Pub Date : 2024-01-22 DOI: 10.1155/2024/2701156
B. M. Munasser, A. O. Mostafa, T. Sultan, Nasser A. EI-Sherbeny, S. M. Madian
{"title":"Inclusion Properties for Classes of -Valent Functions","authors":"B. M. Munasser, A. O. Mostafa, T. Sultan, Nasser A. EI-Sherbeny, S. M. Madian","doi":"10.1155/2024/2701156","DOIUrl":"https://doi.org/10.1155/2024/2701156","url":null,"abstract":"Making use of a differential operator, which is defined here by means of the Hadamard product, we introduce classes of <span><svg height=\"10.2124pt\" style=\"vertical-align:-3.42943pt\" version=\"1.1\" viewbox=\"-0.0498162 -6.78297 7.83752 10.2124\" width=\"7.83752pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-113\"></use></g></svg>-</span>valent functions and investigate various important inclusion properties and characteristics for these classes. Also, a property preserving integrals is considered.","PeriodicalId":15840,"journal":{"name":"Journal of Function Spaces","volume":"27 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139515882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Certain Analogues of Noor Integral Operators Associated with Fractional Integrals 论与分式积分相关的努尔积分算子的某些类似物
IF 1.9 3区 数学
Journal of Function Spaces Pub Date : 2024-01-22 DOI: 10.1155/2024/4565581
Mojtaba Fardi, Ebrahim Amini, Shrideh Al-Omari
{"title":"On Certain Analogues of Noor Integral Operators Associated with Fractional Integrals","authors":"Mojtaba Fardi, Ebrahim Amini, Shrideh Al-Omari","doi":"10.1155/2024/4565581","DOIUrl":"https://doi.org/10.1155/2024/4565581","url":null,"abstract":"In this paper, we employ a <span><svg height=\"9.39034pt\" style=\"vertical-align:-3.42943pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 6.50656 9.39034\" width=\"6.50656pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg>-</span>Noor integral operator to perform a <span><svg height=\"9.39034pt\" style=\"vertical-align:-3.42943pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 6.50656 9.39034\" width=\"6.50656pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-114\"></use></g></svg>-</span>analogue of certain fractional integral operator defined on an open unit disc. Then, we make use of the Hadamard convolution product to discuss several related results. Also, we derive a class of convex functions by utilizing the <span><svg height=\"9.39034pt\" style=\"vertical-align:-3.42943pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 6.50656 9.39034\" width=\"6.50656pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-114\"></use></g></svg>-</span>fractional integral operator and apply the inspired presented theory of the differential subordination, to geometrically explore the most popular differential subordination properties of the aforementioned operator. In addition, we discuss an exciting inclusion for the given convex class of functions. Over and above, we investigate the <span><svg height=\"9.39034pt\" style=\"vertical-align:-3.42943pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 6.50656 9.39034\" width=\"6.50656pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-114\"></use></g></svg>-</span>fractional integral operator and obtain some applications for the differential subordination.","PeriodicalId":15840,"journal":{"name":"Journal of Function Spaces","volume":"53 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139515671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global Universality of the Two-Layer Neural Network with the -Rectified Linear Unit 具有 "整流线性单元 "的双层神经网络的全局通用性
IF 1.9 3区 数学
Journal of Function Spaces Pub Date : 2024-01-18 DOI: 10.1155/2024/3262798
Naoya Hatano, Masahiro Ikeda, Isao Ishikawa, Yoshihiro Sawano
{"title":"Global Universality of the Two-Layer Neural Network with the -Rectified Linear Unit","authors":"Naoya Hatano, Masahiro Ikeda, Isao Ishikawa, Yoshihiro Sawano","doi":"10.1155/2024/3262798","DOIUrl":"https://doi.org/10.1155/2024/3262798","url":null,"abstract":"This paper concerns the universality of the two-layer neural network with the &lt;span&gt;&lt;svg height=\"9.49473pt\" style=\"vertical-align:-0.2063999pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 6.66314 9.49473\" width=\"6.66314pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,0,0)\"&gt;&lt;use xlink:href=\"#g113-108\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/svg&gt;-&lt;/span&gt;rectified linear unit activation function with &lt;span&gt;&lt;svg height=\"10.8649pt\" style=\"vertical-align:-1.57657pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 17.802 10.8649\" width=\"17.802pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,0,0)\"&gt;&lt;use xlink:href=\"#g113-108\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,10.171,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;/svg&gt;&lt;span&gt;&lt;/span&gt;&lt;svg height=\"10.8649pt\" style=\"vertical-align:-1.57657pt\" version=\"1.1\" viewbox=\"21.384183800000002 -9.28833 9.204 10.8649\" width=\"9.204pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,21.434,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,27.674,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;/svg&gt;&lt;span&gt;&lt;/span&gt;&lt;svg height=\"10.8649pt\" style=\"vertical-align:-1.57657pt\" version=\"1.1\" viewbox=\"32.7671838 -9.28833 9.204 10.8649\" width=\"9.204pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,32.817,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,39.057,0)\"&gt;&lt;use xlink:href=\"#g113-45\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/svg&gt;&lt;span&gt;&lt;/span&gt;&lt;svg height=\"10.8649pt\" style=\"vertical-align:-1.57657pt\" version=\"1.1\" viewbox=\"44.1501838 -9.28833 13.505 10.8649\" width=\"13.505pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,44.2,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,49.343,0)\"&gt;&lt;use xlink:href=\"#g113-47\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,54.486,0)\"&gt;&lt;use xlink:href=\"#g113-47\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/svg&gt;&lt;/span&gt; with a suitable norm without any restriction on the shape of the domain in the real line. This type of result is called global universality, which extends the previous result for &lt;span&gt;&lt;svg height=\"9.49473pt\" style=\"vertical-align:-0.2063999pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 17.802 9.49473\" width=\"17.802pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,0,0)\"&gt;&lt;use xlink:href=\"#g113-108\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,10.171,0)\"&gt;&lt;use xlink:href=\"#g117-34\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/svg&gt;&lt;span&gt;&lt;/span&gt;&lt;svg height=\"9.49473pt\" style=\"vertical-align:-0.2063999pt\" version=\"1.1\" viewbox=\"21.384183800000002 -9.28833 6.416 9.49473\" width=\"6.416pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,21.434,0)\"&gt;&lt;use xlink:href=\"#g113-50\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/svg&gt;&lt;/span&gt; by the present authors. This paper covers &lt;span&gt;&lt;svg height=\"9.49473pt\" style=\"vertical-align:-0.","PeriodicalId":15840,"journal":{"name":"Journal of Function Spaces","volume":"28 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139500179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New Integral Operator for Analytic Functions 解析函数的新积分算子
IF 1.9 3区 数学
Journal of Function Spaces Pub Date : 2024-01-12 DOI: 10.1155/2024/5295531
H. Özlem Güney, Shigeyoshi Owa, Adel A. Attiya
{"title":"New Integral Operator for Analytic Functions","authors":"H. Özlem Güney, Shigeyoshi Owa, Adel A. Attiya","doi":"10.1155/2024/5295531","DOIUrl":"https://doi.org/10.1155/2024/5295531","url":null,"abstract":"Let &lt;svg height=\"14.7625pt\" style=\"vertical-align:-5.47417pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 31.9134 14.7625\" width=\"31.9134pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,0,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.0091,0,0,-0.0091,10.244,3.132)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,16.195,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,20.693,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,27.219,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;/svg&gt; be the class of functions &lt;svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 24.0049 12.7178\" width=\"24.0049pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,0,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,8.352,0)\"&gt;&lt;use xlink:href=\"#g113-41\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,12.85,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,19.325,0)\"&gt;&lt;use xlink:href=\"#g113-42\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/svg&gt; given by &lt;span&gt;&lt;svg height=\"17.0656pt\" style=\"vertical-align:-5.474199pt\" version=\"1.1\" viewbox=\"-0.0498162 -11.5914 35.086 17.0656\" width=\"35.086pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,0,0)\"&gt;&lt;use xlink:href=\"#g113-103\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,8.352,0)\"&gt;&lt;use xlink:href=\"#g113-41\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,12.85,0)\"&gt;&lt;use xlink:href=\"#g113-123\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,19.325,0)\"&gt;&lt;use xlink:href=\"#g113-42\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,27.455,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;/svg&gt;&lt;span&gt;&lt;/span&gt;&lt;svg height=\"17.0656pt\" style=\"vertical-align:-5.474199pt\" version=\"1.1\" viewbox=\"38.6681838 -11.5914 22.963 17.0656\" width=\"22.963pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,38.718,0)\"&gt;&lt;use xlink:href=\"#g113-123\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.0091,0,0,-0.0091,45.193,-5.741)\"&gt;&lt;use xlink:href=\"#g50-113\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,54.05,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;/svg&gt;&lt;span&gt;&lt;/span&gt;&lt;svg height=\"17.0656pt\" style=\"vertical-align:-5.474199pt\" version=\"1.1\" viewbox=\"64.5361838 -11.5914 55.423 17.0656\" width=\"55.423pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,64.586,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.0091,0,0,-0.0091,70.579,3.132)\"&gt;&lt;use xlink:href=\"#g50-113\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.0091,0,0,-0.0091,76.013,3.132)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.0091,0,0,-0.0091,81.573,3.132)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,86.788,0)\"&gt;&lt;use xlink:href=\"#g113-123\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.0091,0,0,-0.0091,93.263,-5.741)\"&gt;&lt;use xlink:href=\"#g50-113\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.0091,0,0,-0.0091,98.697,-5.741)\"&gt;&lt;use xlink:href=\"#g54-36\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.0091,0,0,-0.0091,104.257,-5.741)\"&gt;&lt;use xlink:href=\"#g50-11","PeriodicalId":15840,"journal":{"name":"Journal of Function Spaces","volume":"41 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139459158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Existence Results of Random Impulsive Integrodifferential Inclusions with Time-Varying Delays 具有时变延迟的随机脉冲积分微分夹杂的存在性结果
IF 1.9 3区 数学
Journal of Function Spaces Pub Date : 2024-01-05 DOI: 10.1155/2024/5343757
Sahar M. A. Maqbol, R. S. Jain, B. S. Reddy
{"title":"Existence Results of Random Impulsive Integrodifferential Inclusions with Time-Varying Delays","authors":"Sahar M. A. Maqbol, R. S. Jain, B. S. Reddy","doi":"10.1155/2024/5343757","DOIUrl":"https://doi.org/10.1155/2024/5343757","url":null,"abstract":"This study examines the existence of mild solutions for nonlinear random impulsive integrodifferential inclusions with time-varying delays under sufficient conditions. Our study is based on the Martelli fixed point theorem, Pachpatte’s inequality, and the fixed point theorem due to Covitz and Nadler. Besides, we generalize, extend, and develop some well-known results in the existing literature.","PeriodicalId":15840,"journal":{"name":"Journal of Function Spaces","volume":"71 1 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139102703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retracted: Complex Spherical Fuzzy Decision Support System Based on Entropy Measure and Power Operator 撤回:基于熵值和功率算子的复杂球形模糊决策支持系统
IF 1.9 3区 数学
Journal of Function Spaces Pub Date : 2023-12-20 DOI: 10.1155/2023/9836721
Journal of Function Spaces
{"title":"Retracted: Complex Spherical Fuzzy Decision Support System Based on Entropy Measure and Power Operator","authors":"Journal of Function Spaces","doi":"10.1155/2023/9836721","DOIUrl":"https://doi.org/10.1155/2023/9836721","url":null,"abstract":"<jats:p />","PeriodicalId":15840,"journal":{"name":"Journal of Function Spaces","volume":"94 26","pages":""},"PeriodicalIF":1.9,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138954201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信