{"title":"无限域上共振时 Hadamard 分式边界问题的可解性","authors":"Xingfang Feng, Yucheng Li","doi":"10.1155/2024/5554742","DOIUrl":null,"url":null,"abstract":"This paper investigates the existence of solutions for Hadamard fractional differential equations with integral boundary conditions at resonance on infinite domain. By constructing two suitable Banach spaces, establishing an appropriate compactness criterion, and defining appropriate projectors, we study an existence theorem upon the coincidence degree theory of Mawhin. An example is given to illustrate our main result.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solvability of a Hadamard Fractional Boundary Value Problem at Resonance on Infinite Domain\",\"authors\":\"Xingfang Feng, Yucheng Li\",\"doi\":\"10.1155/2024/5554742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the existence of solutions for Hadamard fractional differential equations with integral boundary conditions at resonance on infinite domain. By constructing two suitable Banach spaces, establishing an appropriate compactness criterion, and defining appropriate projectors, we study an existence theorem upon the coincidence degree theory of Mawhin. An example is given to illustrate our main result.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/5554742\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/5554742","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Solvability of a Hadamard Fractional Boundary Value Problem at Resonance on Infinite Domain
This paper investigates the existence of solutions for Hadamard fractional differential equations with integral boundary conditions at resonance on infinite domain. By constructing two suitable Banach spaces, establishing an appropriate compactness criterion, and defining appropriate projectors, we study an existence theorem upon the coincidence degree theory of Mawhin. An example is given to illustrate our main result.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.