具有 "整流线性单元 "的双层神经网络的全局通用性

IF 1.9 3区 数学 Q1 MATHEMATICS
Naoya Hatano, Masahiro Ikeda, Isao Ishikawa, Yoshihiro Sawano
{"title":"具有 \"整流线性单元 \"的双层神经网络的全局通用性","authors":"Naoya Hatano, Masahiro Ikeda, Isao Ishikawa, Yoshihiro Sawano","doi":"10.1155/2024/3262798","DOIUrl":null,"url":null,"abstract":"This paper concerns the universality of the two-layer neural network with the <span><svg height=\"9.49473pt\" style=\"vertical-align:-0.2063999pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 6.66314 9.49473\" width=\"6.66314pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-108\"></use></g></svg>-</span>rectified linear unit activation function with <span><svg height=\"10.8649pt\" style=\"vertical-align:-1.57657pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 17.802 10.8649\" width=\"17.802pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-108\"></use></g><g transform=\"matrix(.013,0,0,-0.013,10.171,0)\"></path></g></svg><span></span><svg height=\"10.8649pt\" style=\"vertical-align:-1.57657pt\" version=\"1.1\" viewbox=\"21.384183800000002 -9.28833 9.204 10.8649\" width=\"9.204pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,21.434,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,27.674,0)\"></path></g></svg><span></span><svg height=\"10.8649pt\" style=\"vertical-align:-1.57657pt\" version=\"1.1\" viewbox=\"32.7671838 -9.28833 9.204 10.8649\" width=\"9.204pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,32.817,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,39.057,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><svg height=\"10.8649pt\" style=\"vertical-align:-1.57657pt\" version=\"1.1\" viewbox=\"44.1501838 -9.28833 13.505 10.8649\" width=\"13.505pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,44.2,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,49.343,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,54.486,0)\"><use xlink:href=\"#g113-47\"></use></g></svg></span> with a suitable norm without any restriction on the shape of the domain in the real line. This type of result is called global universality, which extends the previous result for <span><svg height=\"9.49473pt\" style=\"vertical-align:-0.2063999pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 17.802 9.49473\" width=\"17.802pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-108\"></use></g><g transform=\"matrix(.013,0,0,-0.013,10.171,0)\"><use xlink:href=\"#g117-34\"></use></g></svg><span></span><svg height=\"9.49473pt\" style=\"vertical-align:-0.2063999pt\" version=\"1.1\" viewbox=\"21.384183800000002 -9.28833 6.416 9.49473\" width=\"6.416pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,21.434,0)\"><use xlink:href=\"#g113-50\"></use></g></svg></span> by the present authors. This paper covers <span><svg height=\"9.49473pt\" style=\"vertical-align:-0.2063999pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 6.66314 9.49473\" width=\"6.66314pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-108\"></use></g></svg>-</span>sigmoidal functions as an application of the fundamental result on <span><svg height=\"9.49473pt\" style=\"vertical-align:-0.2063999pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 6.66314 9.49473\" width=\"6.66314pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-108\"></use></g></svg>-</span>rectified linear unit functions.","PeriodicalId":15840,"journal":{"name":"Journal of Function Spaces","volume":"28 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global Universality of the Two-Layer Neural Network with the -Rectified Linear Unit\",\"authors\":\"Naoya Hatano, Masahiro Ikeda, Isao Ishikawa, Yoshihiro Sawano\",\"doi\":\"10.1155/2024/3262798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper concerns the universality of the two-layer neural network with the <span><svg height=\\\"9.49473pt\\\" style=\\\"vertical-align:-0.2063999pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 6.66314 9.49473\\\" width=\\\"6.66314pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-108\\\"></use></g></svg>-</span>rectified linear unit activation function with <span><svg height=\\\"10.8649pt\\\" style=\\\"vertical-align:-1.57657pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 17.802 10.8649\\\" width=\\\"17.802pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-108\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,10.171,0)\\\"></path></g></svg><span></span><svg height=\\\"10.8649pt\\\" style=\\\"vertical-align:-1.57657pt\\\" version=\\\"1.1\\\" viewbox=\\\"21.384183800000002 -9.28833 9.204 10.8649\\\" width=\\\"9.204pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,21.434,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,27.674,0)\\\"></path></g></svg><span></span><svg height=\\\"10.8649pt\\\" style=\\\"vertical-align:-1.57657pt\\\" version=\\\"1.1\\\" viewbox=\\\"32.7671838 -9.28833 9.204 10.8649\\\" width=\\\"9.204pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,32.817,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,39.057,0)\\\"><use xlink:href=\\\"#g113-45\\\"></use></g></svg><span></span><svg height=\\\"10.8649pt\\\" style=\\\"vertical-align:-1.57657pt\\\" version=\\\"1.1\\\" viewbox=\\\"44.1501838 -9.28833 13.505 10.8649\\\" width=\\\"13.505pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,44.2,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,49.343,0)\\\"><use xlink:href=\\\"#g113-47\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,54.486,0)\\\"><use xlink:href=\\\"#g113-47\\\"></use></g></svg></span> with a suitable norm without any restriction on the shape of the domain in the real line. This type of result is called global universality, which extends the previous result for <span><svg height=\\\"9.49473pt\\\" style=\\\"vertical-align:-0.2063999pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 17.802 9.49473\\\" width=\\\"17.802pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-108\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,10.171,0)\\\"><use xlink:href=\\\"#g117-34\\\"></use></g></svg><span></span><svg height=\\\"9.49473pt\\\" style=\\\"vertical-align:-0.2063999pt\\\" version=\\\"1.1\\\" viewbox=\\\"21.384183800000002 -9.28833 6.416 9.49473\\\" width=\\\"6.416pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,21.434,0)\\\"><use xlink:href=\\\"#g113-50\\\"></use></g></svg></span> by the present authors. This paper covers <span><svg height=\\\"9.49473pt\\\" style=\\\"vertical-align:-0.2063999pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 6.66314 9.49473\\\" width=\\\"6.66314pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-108\\\"></use></g></svg>-</span>sigmoidal functions as an application of the fundamental result on <span><svg height=\\\"9.49473pt\\\" style=\\\"vertical-align:-0.2063999pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 6.66314 9.49473\\\" width=\\\"6.66314pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-108\\\"></use></g></svg>-</span>rectified linear unit functions.\",\"PeriodicalId\":15840,\"journal\":{\"name\":\"Journal of Function Spaces\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Function Spaces\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/3262798\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Function Spaces","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/3262798","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文论述了具有适当规范的-修正线性单元激活函数的双层神经网络的普遍性,对实线域的形状没有任何限制。这类结果被称为全局普遍性,它扩展了本文作者之前的结果。本文涵盖了 "正弦函数",作为 "修正线性单元函数 "基本结果的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global Universality of the Two-Layer Neural Network with the -Rectified Linear Unit
This paper concerns the universality of the two-layer neural network with the -rectified linear unit activation function with with a suitable norm without any restriction on the shape of the domain in the real line. This type of result is called global universality, which extends the previous result for by the present authors. This paper covers -sigmoidal functions as an application of the fundamental result on -rectified linear unit functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Function Spaces
Journal of Function Spaces MATHEMATICS, APPLIEDMATHEMATICS -MATHEMATICS
CiteScore
4.10
自引率
10.50%
发文量
451
审稿时长
15 weeks
期刊介绍: Journal of Function Spaces (formerly titled Journal of Function Spaces and Applications) publishes papers on all aspects of function spaces, functional analysis, and their employment across other mathematical disciplines. As well as original research, Journal of Function Spaces also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信