估算双等价函数类一般系数的新方法

IF 1.9 3区 数学 Q1 MATHEMATICS
Oqlah Al-Refai, Ala Amourah, Tariq Al-Hawary, Basem Aref Frasin
{"title":"估算双等价函数类一般系数的新方法","authors":"Oqlah Al-Refai, Ala Amourah, Tariq Al-Hawary, Basem Aref Frasin","doi":"10.1155/2024/9889253","DOIUrl":null,"url":null,"abstract":"This study establishes a new method to investigate bounds of <span><svg height=\"12.5794pt\" style=\"vertical-align:-3.29107pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 18.1261 12.5794\" width=\"18.1261pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,3.419,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,9.412,3.132)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,14.559,0)\"><use xlink:href=\"#g113-9\"></use></g></svg>;</span> <span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 22.3 11.5564\" width=\"22.3pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,4.498,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,14.669,0)\"></path></g></svg><span></span><span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"25.8821838 -9.28833 11.235 11.5564\" width=\"11.235pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,25.932,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,32.458,0)\"></path></g></svg>,</span></span> for certain general classes of bi-univalent functions. The results include a number of improvements and generalizations for well-known estimations. We also discuss bounds of <svg height=\"15.535pt\" style=\"vertical-align:-3.9436pt\" version=\"1.1\" viewbox=\"-0.0498162 -11.5914 64.2012 15.535\" width=\"64.2012pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-9\"></use></g><g transform=\"matrix(.013,0,0,-0.013,3.419,0)\"><use xlink:href=\"#g113-111\"></use></g><g transform=\"matrix(.013,0,0,-0.013,9.945,0)\"><use xlink:href=\"#g113-98\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,16.525,-5.741)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,15.938,3.784)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,24.377,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,34.914,0)\"><use xlink:href=\"#g113-98\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,40.907,3.132)\"><use xlink:href=\"#g50-51\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,45.339,3.132)\"><use xlink:href=\"#g50-111\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,49.998,3.132)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,55.558,3.132)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,60.559,0)\"><use xlink:href=\"#g113-9\"></use></g></svg> and consider several corollaries, remarks, and consequences of the results presented in this paper.","PeriodicalId":15840,"journal":{"name":"Journal of Function Spaces","volume":"130 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Method for Estimating General Coefficients to Classes of Bi-univalent Functions\",\"authors\":\"Oqlah Al-Refai, Ala Amourah, Tariq Al-Hawary, Basem Aref Frasin\",\"doi\":\"10.1155/2024/9889253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study establishes a new method to investigate bounds of <span><svg height=\\\"12.5794pt\\\" style=\\\"vertical-align:-3.29107pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 18.1261 12.5794\\\" width=\\\"18.1261pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,3.419,0)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,9.412,3.132)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,14.559,0)\\\"><use xlink:href=\\\"#g113-9\\\"></use></g></svg>;</span> <span><svg height=\\\"11.5564pt\\\" style=\\\"vertical-align:-2.26807pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 22.3 11.5564\\\" width=\\\"22.3pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,4.498,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,14.669,0)\\\"></path></g></svg><span></span><span><svg height=\\\"11.5564pt\\\" style=\\\"vertical-align:-2.26807pt\\\" version=\\\"1.1\\\" viewbox=\\\"25.8821838 -9.28833 11.235 11.5564\\\" width=\\\"11.235pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,25.932,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,32.458,0)\\\"></path></g></svg>,</span></span> for certain general classes of bi-univalent functions. The results include a number of improvements and generalizations for well-known estimations. We also discuss bounds of <svg height=\\\"15.535pt\\\" style=\\\"vertical-align:-3.9436pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -11.5914 64.2012 15.535\\\" width=\\\"64.2012pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-9\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,3.419,0)\\\"><use xlink:href=\\\"#g113-111\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,9.945,0)\\\"><use xlink:href=\\\"#g113-98\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,16.525,-5.741)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,15.938,3.784)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,24.377,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,34.914,0)\\\"><use xlink:href=\\\"#g113-98\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,40.907,3.132)\\\"><use xlink:href=\\\"#g50-51\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,45.339,3.132)\\\"><use xlink:href=\\\"#g50-111\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,49.998,3.132)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,55.558,3.132)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,60.559,0)\\\"><use xlink:href=\\\"#g113-9\\\"></use></g></svg> and consider several corollaries, remarks, and consequences of the results presented in this paper.\",\"PeriodicalId\":15840,\"journal\":{\"name\":\"Journal of Function Spaces\",\"volume\":\"130 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Function Spaces\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/9889253\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Function Spaces","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/9889253","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究建立了一种新方法,用于研究某些一般类双等价函数的 ; , 的边界。研究结果包括对一些著名估计的改进和概括。我们还讨论了本文结果的边界,并考虑了本文结果的若干推论、注释和后果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Method for Estimating General Coefficients to Classes of Bi-univalent Functions
This study establishes a new method to investigate bounds of ; , for certain general classes of bi-univalent functions. The results include a number of improvements and generalizations for well-known estimations. We also discuss bounds of and consider several corollaries, remarks, and consequences of the results presented in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Function Spaces
Journal of Function Spaces MATHEMATICS, APPLIEDMATHEMATICS -MATHEMATICS
CiteScore
4.10
自引率
10.50%
发文量
451
审稿时长
15 weeks
期刊介绍: Journal of Function Spaces (formerly titled Journal of Function Spaces and Applications) publishes papers on all aspects of function spaces, functional analysis, and their employment across other mathematical disciplines. As well as original research, Journal of Function Spaces also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信