确定几类无爪立方图的边缘支配数

IF 1.9 3区 数学 Q1 MATHEMATICS
Muhammad Shoaib Sardar, Hamna Choudhry, Jia-Bao Liu
{"title":"确定几类无爪立方图的边缘支配数","authors":"Muhammad Shoaib Sardar, Hamna Choudhry, Jia-Bao Liu","doi":"10.1155/2024/1182858","DOIUrl":null,"url":null,"abstract":"Let <span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 20.155 11.5564\" width=\"20.155pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,12.524,0)\"></path></g></svg><span></span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"23.7371838 -9.28833 14.99 11.5564\" width=\"14.99pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,23.787,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,28.285,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,35.813,0)\"></path></g></svg><span></span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"40.9061838 -9.28833 12.769 11.5564\" width=\"12.769pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,40.956,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,48.964,0)\"></path></g></svg></span> be a simple graph with vertex set <svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 9.35121 8.8423\" width=\"9.35121pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-87\"></use></g></svg> and edge set <span><svg height=\"8.68572pt\" style=\"vertical-align:-0.0498209pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 8.13765 8.68572\" width=\"8.13765pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-70\"></use></g></svg>.</span> In a graph <span><svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 9.02496 8.8423\" width=\"9.02496pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-72\"></use></g></svg>,</span> a subset of edges denoted by <svg height=\"9.09021pt\" style=\"vertical-align:-0.2455397pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.84467 14.0879 9.09021\" width=\"14.0879pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg> is referred to as an edge-dominating set of <svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 9.02496 8.8423\" width=\"9.02496pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-72\"></use></g></svg> if every edge that is not in <svg height=\"9.09021pt\" style=\"vertical-align:-0.2455397pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.84467 14.0879 9.09021\" width=\"14.0879pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g198-14\"></use></g></svg> is incident to at least one member of <span><svg height=\"9.09021pt\" style=\"vertical-align:-0.2455397pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.84467 14.0879 9.09021\" width=\"14.0879pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g198-14\"></use></g></svg>.</span> A set <span><svg height=\"9.96448pt\" style=\"vertical-align:-1.11981pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.84467 25.199 9.96448\" width=\"25.199pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g198-14\"></use></g><g transform=\"matrix(.013,0,0,-0.013,17.568,0)\"></path></g></svg><span></span><svg height=\"9.96448pt\" style=\"vertical-align:-1.11981pt\" version=\"1.1\" viewbox=\"28.7811838 -8.84467 8.218 9.96448\" width=\"8.218pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,28.831,0)\"><use xlink:href=\"#g113-70\"></use></g></svg></span> is the locating edge-dominating set if for every two edges <span><svg height=\"12.4698pt\" style=\"vertical-align:-3.18147pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 13.227 12.4698\" width=\"13.227pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,5.317,3.132)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,10.263,0)\"></path></g></svg><span></span><svg height=\"12.4698pt\" style=\"vertical-align:-3.18147pt\" version=\"1.1\" viewbox=\"15.3571838 -9.28833 20.759 12.4698\" width=\"20.759pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,15.407,0)\"><use xlink:href=\"#g113-102\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,20.724,3.132)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,29.302,0)\"></path></g></svg><span></span><span><svg height=\"12.4698pt\" style=\"vertical-align:-3.18147pt\" version=\"1.1\" viewbox=\"39.7481838 -9.28833 44.703 12.4698\" width=\"44.703pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,39.798,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,44.296,0)\"><use xlink:href=\"#g113-70\"></use></g><g transform=\"matrix(.013,0,0,-0.013,55.21,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,65.746,0)\"><use xlink:href=\"#g198-14\"></use></g><g transform=\"matrix(.013,0,0,-0.013,79.682,0)\"><use xlink:href=\"#g113-42\"></use></g></svg>,</span></span> the sets <span><svg height=\"12.4698pt\" style=\"vertical-align:-3.18147pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 40.706 12.4698\" width=\"40.706pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,10.91,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,15.408,0)\"><use xlink:href=\"#g113-102\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,20.725,3.132)\"><use xlink:href=\"#g50-50\"></use></g><g transform=\"matrix(.013,0,0,-0.013,25.672,0)\"><use xlink:href=\"#g113-42\"></use></g><g transform=\"matrix(.013,0,0,-0.013,33.075,0)\"></path></g></svg><span></span><svg height=\"12.4698pt\" style=\"vertical-align:-3.18147pt\" version=\"1.1\" viewbox=\"43.5621838 -9.28833 14.207 12.4698\" width=\"14.207pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,43.612,0)\"><use xlink:href=\"#g198-14\"></use></g></svg></span> and <span><svg height=\"12.4698pt\" style=\"vertical-align:-3.18147pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 40.706 12.4698\" width=\"40.706pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-79\"></use></g><g transform=\"matrix(.013,0,0,-0.013,10.91,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,15.408,0)\"><use xlink:href=\"#g113-102\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,20.725,3.132)\"><use xlink:href=\"#g50-51\"></use></g><g transform=\"matrix(.013,0,0,-0.013,25.672,0)\"><use xlink:href=\"#g113-42\"></use></g><g transform=\"matrix(.013,0,0,-0.013,33.075,0)\"><use xlink:href=\"#g117-60\"></use></g></svg><span></span><svg height=\"12.4698pt\" style=\"vertical-align:-3.18147pt\" version=\"1.1\" viewbox=\"43.5621838 -9.28833 14.207 12.4698\" width=\"14.207pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,43.612,0)\"><use xlink:href=\"#g198-14\"></use></g></svg></span> are nonempty and different. The edge domination number <svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 29.3663 12.7178\" width=\"29.3663pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,5.668,3.132)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,11.29,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,15.788,0)\"><use xlink:href=\"#g113-72\"></use></g><g transform=\"matrix(.013,0,0,-0.013,24.681,0)\"><use xlink:href=\"#g113-42\"></use></g></svg> of <svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 9.02496 8.8423\" width=\"9.02496pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-72\"></use></g></svg> is the minimum cardinality of all edge-dominating sets of <span><svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 9.02496 8.8423\" width=\"9.02496pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-72\"></use></g></svg>.</span> The purpose of this study is to determine the locating edge domination number of certain types of claw-free cubic graphs.","PeriodicalId":15840,"journal":{"name":"Journal of Function Spaces","volume":"3 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Locating Edge Domination Number of Some Classes of Claw-Free Cubic Graphs\",\"authors\":\"Muhammad Shoaib Sardar, Hamna Choudhry, Jia-Bao Liu\",\"doi\":\"10.1155/2024/1182858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <span><svg height=\\\"11.5564pt\\\" style=\\\"vertical-align:-2.26807pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 20.155 11.5564\\\" width=\\\"20.155pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,12.524,0)\\\"></path></g></svg><span></span><svg height=\\\"11.5564pt\\\" style=\\\"vertical-align:-2.26807pt\\\" version=\\\"1.1\\\" viewbox=\\\"23.7371838 -9.28833 14.99 11.5564\\\" width=\\\"14.99pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,23.787,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,28.285,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,35.813,0)\\\"></path></g></svg><span></span><svg height=\\\"11.5564pt\\\" style=\\\"vertical-align:-2.26807pt\\\" version=\\\"1.1\\\" viewbox=\\\"40.9061838 -9.28833 12.769 11.5564\\\" width=\\\"12.769pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,40.956,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,48.964,0)\\\"></path></g></svg></span> be a simple graph with vertex set <svg height=\\\"8.8423pt\\\" style=\\\"vertical-align:-0.2064009pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 9.35121 8.8423\\\" width=\\\"9.35121pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-87\\\"></use></g></svg> and edge set <span><svg height=\\\"8.68572pt\\\" style=\\\"vertical-align:-0.0498209pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 8.13765 8.68572\\\" width=\\\"8.13765pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-70\\\"></use></g></svg>.</span> In a graph <span><svg height=\\\"8.8423pt\\\" style=\\\"vertical-align:-0.2064009pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 9.02496 8.8423\\\" width=\\\"9.02496pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-72\\\"></use></g></svg>,</span> a subset of edges denoted by <svg height=\\\"9.09021pt\\\" style=\\\"vertical-align:-0.2455397pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.84467 14.0879 9.09021\\\" width=\\\"14.0879pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g></svg> is referred to as an edge-dominating set of <svg height=\\\"8.8423pt\\\" style=\\\"vertical-align:-0.2064009pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 9.02496 8.8423\\\" width=\\\"9.02496pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-72\\\"></use></g></svg> if every edge that is not in <svg height=\\\"9.09021pt\\\" style=\\\"vertical-align:-0.2455397pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.84467 14.0879 9.09021\\\" width=\\\"14.0879pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g198-14\\\"></use></g></svg> is incident to at least one member of <span><svg height=\\\"9.09021pt\\\" style=\\\"vertical-align:-0.2455397pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.84467 14.0879 9.09021\\\" width=\\\"14.0879pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g198-14\\\"></use></g></svg>.</span> A set <span><svg height=\\\"9.96448pt\\\" style=\\\"vertical-align:-1.11981pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.84467 25.199 9.96448\\\" width=\\\"25.199pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g198-14\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,17.568,0)\\\"></path></g></svg><span></span><svg height=\\\"9.96448pt\\\" style=\\\"vertical-align:-1.11981pt\\\" version=\\\"1.1\\\" viewbox=\\\"28.7811838 -8.84467 8.218 9.96448\\\" width=\\\"8.218pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,28.831,0)\\\"><use xlink:href=\\\"#g113-70\\\"></use></g></svg></span> is the locating edge-dominating set if for every two edges <span><svg height=\\\"12.4698pt\\\" style=\\\"vertical-align:-3.18147pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 13.227 12.4698\\\" width=\\\"13.227pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,5.317,3.132)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,10.263,0)\\\"></path></g></svg><span></span><svg height=\\\"12.4698pt\\\" style=\\\"vertical-align:-3.18147pt\\\" version=\\\"1.1\\\" viewbox=\\\"15.3571838 -9.28833 20.759 12.4698\\\" width=\\\"20.759pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,15.407,0)\\\"><use xlink:href=\\\"#g113-102\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,20.724,3.132)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,29.302,0)\\\"></path></g></svg><span></span><span><svg height=\\\"12.4698pt\\\" style=\\\"vertical-align:-3.18147pt\\\" version=\\\"1.1\\\" viewbox=\\\"39.7481838 -9.28833 44.703 12.4698\\\" width=\\\"44.703pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,39.798,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,44.296,0)\\\"><use xlink:href=\\\"#g113-70\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,55.21,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,65.746,0)\\\"><use xlink:href=\\\"#g198-14\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,79.682,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g></svg>,</span></span> the sets <span><svg height=\\\"12.4698pt\\\" style=\\\"vertical-align:-3.18147pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 40.706 12.4698\\\" width=\\\"40.706pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,10.91,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,15.408,0)\\\"><use xlink:href=\\\"#g113-102\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,20.725,3.132)\\\"><use xlink:href=\\\"#g50-50\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,25.672,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,33.075,0)\\\"></path></g></svg><span></span><svg height=\\\"12.4698pt\\\" style=\\\"vertical-align:-3.18147pt\\\" version=\\\"1.1\\\" viewbox=\\\"43.5621838 -9.28833 14.207 12.4698\\\" width=\\\"14.207pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,43.612,0)\\\"><use xlink:href=\\\"#g198-14\\\"></use></g></svg></span> and <span><svg height=\\\"12.4698pt\\\" style=\\\"vertical-align:-3.18147pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 40.706 12.4698\\\" width=\\\"40.706pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-79\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,10.91,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,15.408,0)\\\"><use xlink:href=\\\"#g113-102\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,20.725,3.132)\\\"><use xlink:href=\\\"#g50-51\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,25.672,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,33.075,0)\\\"><use xlink:href=\\\"#g117-60\\\"></use></g></svg><span></span><svg height=\\\"12.4698pt\\\" style=\\\"vertical-align:-3.18147pt\\\" version=\\\"1.1\\\" viewbox=\\\"43.5621838 -9.28833 14.207 12.4698\\\" width=\\\"14.207pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,43.612,0)\\\"><use xlink:href=\\\"#g198-14\\\"></use></g></svg></span> are nonempty and different. The edge domination number <svg height=\\\"12.7178pt\\\" style=\\\"vertical-align:-3.42947pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 29.3663 12.7178\\\" width=\\\"29.3663pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,5.668,3.132)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,11.29,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,15.788,0)\\\"><use xlink:href=\\\"#g113-72\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,24.681,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g></svg> of <svg height=\\\"8.8423pt\\\" style=\\\"vertical-align:-0.2064009pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 9.02496 8.8423\\\" width=\\\"9.02496pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-72\\\"></use></g></svg> is the minimum cardinality of all edge-dominating sets of <span><svg height=\\\"8.8423pt\\\" style=\\\"vertical-align:-0.2064009pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 9.02496 8.8423\\\" width=\\\"9.02496pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-72\\\"></use></g></svg>.</span> The purpose of this study is to determine the locating edge domination number of certain types of claw-free cubic graphs.\",\"PeriodicalId\":15840,\"journal\":{\"name\":\"Journal of Function Spaces\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Function Spaces\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/1182858\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Function Spaces","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/1182858","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

假设是一个简单图,有顶点集和边集。在图中,如果每条不在图中的边都至少与图中的一个成员相关联,则用 表示的边的子集称为图的边支配集。 如果每两条边 的集合 和 都是非空且不同的,则该集合为定位边支配集。本研究的目的是确定某些类型无爪立方图的定位边缘支配数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Locating Edge Domination Number of Some Classes of Claw-Free Cubic Graphs
Let be a simple graph with vertex set and edge set . In a graph , a subset of edges denoted by is referred to as an edge-dominating set of if every edge that is not in is incident to at least one member of . A set is the locating edge-dominating set if for every two edges , the sets and are nonempty and different. The edge domination number of is the minimum cardinality of all edge-dominating sets of . The purpose of this study is to determine the locating edge domination number of certain types of claw-free cubic graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Function Spaces
Journal of Function Spaces MATHEMATICS, APPLIEDMATHEMATICS -MATHEMATICS
CiteScore
4.10
自引率
10.50%
发文量
451
审稿时长
15 weeks
期刊介绍: Journal of Function Spaces (formerly titled Journal of Function Spaces and Applications) publishes papers on all aspects of function spaces, functional analysis, and their employment across other mathematical disciplines. As well as original research, Journal of Function Spaces also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信