求助PDF
{"title":"确定几类无爪立方图的边缘支配数","authors":"Muhammad Shoaib Sardar, Hamna Choudhry, Jia-Bao Liu","doi":"10.1155/2024/1182858","DOIUrl":null,"url":null,"abstract":"Let <span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 20.155 11.5564\" width=\"20.155pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,12.524,0)\"></path></g></svg><span></span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"23.7371838 -9.28833 14.99 11.5564\" width=\"14.99pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,23.787,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,28.285,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,35.813,0)\"></path></g></svg><span></span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"40.9061838 -9.28833 12.769 11.5564\" width=\"12.769pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,40.956,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,48.964,0)\"></path></g></svg></span> be a simple graph with vertex set <svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 9.35121 8.8423\" width=\"9.35121pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-87\"></use></g></svg> and edge set <span><svg height=\"8.68572pt\" style=\"vertical-align:-0.0498209pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 8.13765 8.68572\" width=\"8.13765pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-70\"></use></g></svg>.</span> In a graph <span><svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 9.02496 8.8423\" width=\"9.02496pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-72\"></use></g></svg>,</span> a subset of edges denoted by <svg height=\"9.09021pt\" style=\"vertical-align:-0.2455397pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.84467 14.0879 9.09021\" width=\"14.0879pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg> is referred to as an edge-dominating set of <svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 9.02496 8.8423\" width=\"9.02496pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-72\"></use></g></svg> if every edge that is not in <svg height=\"9.09021pt\" style=\"vertical-align:-0.2455397pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.84467 14.0879 9.09021\" width=\"14.0879pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g198-14\"></use></g></svg> is incident to at least one member of <span><svg height=\"9.09021pt\" style=\"vertical-align:-0.2455397pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.84467 14.0879 9.09021\" width=\"14.0879pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g198-14\"></use></g></svg>.</span> A set <span><svg height=\"9.96448pt\" style=\"vertical-align:-1.11981pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.84467 25.199 9.96448\" width=\"25.199pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g198-14\"></use></g><g transform=\"matrix(.013,0,0,-0.013,17.568,0)\"></path></g></svg><span></span><svg height=\"9.96448pt\" style=\"vertical-align:-1.11981pt\" version=\"1.1\" viewbox=\"28.7811838 -8.84467 8.218 9.96448\" width=\"8.218pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,28.831,0)\"><use xlink:href=\"#g113-70\"></use></g></svg></span> is the locating edge-dominating set if for every two edges <span><svg height=\"12.4698pt\" style=\"vertical-align:-3.18147pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 13.227 12.4698\" width=\"13.227pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,5.317,3.132)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,10.263,0)\"></path></g></svg><span></span><svg height=\"12.4698pt\" style=\"vertical-align:-3.18147pt\" version=\"1.1\" viewbox=\"15.3571838 -9.28833 20.759 12.4698\" width=\"20.759pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,15.407,0)\"><use xlink:href=\"#g113-102\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,20.724,3.132)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,29.302,0)\"></path></g></svg><span></span><span><svg height=\"12.4698pt\" style=\"vertical-align:-3.18147pt\" version=\"1.1\" viewbox=\"39.7481838 -9.28833 44.703 12.4698\" width=\"44.703pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,39.798,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,44.296,0)\"><use xlink:href=\"#g113-70\"></use></g><g transform=\"matrix(.013,0,0,-0.013,55.21,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,65.746,0)\"><use xlink:href=\"#g198-14\"></use></g><g transform=\"matrix(.013,0,0,-0.013,79.682,0)\"><use xlink:href=\"#g113-42\"></use></g></svg>,</span></span> the sets <span><svg height=\"12.4698pt\" style=\"vertical-align:-3.18147pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 40.706 12.4698\" width=\"40.706pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,10.91,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,15.408,0)\"><use xlink:href=\"#g113-102\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,20.725,3.132)\"><use xlink:href=\"#g50-50\"></use></g><g transform=\"matrix(.013,0,0,-0.013,25.672,0)\"><use xlink:href=\"#g113-42\"></use></g><g transform=\"matrix(.013,0,0,-0.013,33.075,0)\"></path></g></svg><span></span><svg height=\"12.4698pt\" style=\"vertical-align:-3.18147pt\" version=\"1.1\" viewbox=\"43.5621838 -9.28833 14.207 12.4698\" width=\"14.207pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,43.612,0)\"><use xlink:href=\"#g198-14\"></use></g></svg></span> and <span><svg height=\"12.4698pt\" style=\"vertical-align:-3.18147pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 40.706 12.4698\" width=\"40.706pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-79\"></use></g><g transform=\"matrix(.013,0,0,-0.013,10.91,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,15.408,0)\"><use xlink:href=\"#g113-102\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,20.725,3.132)\"><use xlink:href=\"#g50-51\"></use></g><g transform=\"matrix(.013,0,0,-0.013,25.672,0)\"><use xlink:href=\"#g113-42\"></use></g><g transform=\"matrix(.013,0,0,-0.013,33.075,0)\"><use xlink:href=\"#g117-60\"></use></g></svg><span></span><svg height=\"12.4698pt\" style=\"vertical-align:-3.18147pt\" version=\"1.1\" viewbox=\"43.5621838 -9.28833 14.207 12.4698\" width=\"14.207pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,43.612,0)\"><use xlink:href=\"#g198-14\"></use></g></svg></span> are nonempty and different. The edge domination number <svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 29.3663 12.7178\" width=\"29.3663pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,5.668,3.132)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,11.29,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,15.788,0)\"><use xlink:href=\"#g113-72\"></use></g><g transform=\"matrix(.013,0,0,-0.013,24.681,0)\"><use xlink:href=\"#g113-42\"></use></g></svg> of <svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 9.02496 8.8423\" width=\"9.02496pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-72\"></use></g></svg> is the minimum cardinality of all edge-dominating sets of <span><svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 9.02496 8.8423\" width=\"9.02496pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-72\"></use></g></svg>.</span> The purpose of this study is to determine the locating edge domination number of certain types of claw-free cubic graphs.","PeriodicalId":15840,"journal":{"name":"Journal of Function Spaces","volume":"3 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Locating Edge Domination Number of Some Classes of Claw-Free Cubic Graphs\",\"authors\":\"Muhammad Shoaib Sardar, Hamna Choudhry, Jia-Bao Liu\",\"doi\":\"10.1155/2024/1182858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <span><svg height=\\\"11.5564pt\\\" style=\\\"vertical-align:-2.26807pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 20.155 11.5564\\\" width=\\\"20.155pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,12.524,0)\\\"></path></g></svg><span></span><svg height=\\\"11.5564pt\\\" style=\\\"vertical-align:-2.26807pt\\\" version=\\\"1.1\\\" viewbox=\\\"23.7371838 -9.28833 14.99 11.5564\\\" width=\\\"14.99pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,23.787,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,28.285,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,35.813,0)\\\"></path></g></svg><span></span><svg height=\\\"11.5564pt\\\" style=\\\"vertical-align:-2.26807pt\\\" version=\\\"1.1\\\" viewbox=\\\"40.9061838 -9.28833 12.769 11.5564\\\" width=\\\"12.769pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,40.956,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,48.964,0)\\\"></path></g></svg></span> be a simple graph with vertex set <svg height=\\\"8.8423pt\\\" style=\\\"vertical-align:-0.2064009pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 9.35121 8.8423\\\" width=\\\"9.35121pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-87\\\"></use></g></svg> and edge set <span><svg height=\\\"8.68572pt\\\" style=\\\"vertical-align:-0.0498209pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 8.13765 8.68572\\\" width=\\\"8.13765pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-70\\\"></use></g></svg>.</span> In a graph <span><svg height=\\\"8.8423pt\\\" style=\\\"vertical-align:-0.2064009pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 9.02496 8.8423\\\" width=\\\"9.02496pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-72\\\"></use></g></svg>,</span> a subset of edges denoted by <svg height=\\\"9.09021pt\\\" style=\\\"vertical-align:-0.2455397pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.84467 14.0879 9.09021\\\" width=\\\"14.0879pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g></svg> is referred to as an edge-dominating set of <svg height=\\\"8.8423pt\\\" style=\\\"vertical-align:-0.2064009pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 9.02496 8.8423\\\" width=\\\"9.02496pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-72\\\"></use></g></svg> if every edge that is not in <svg height=\\\"9.09021pt\\\" style=\\\"vertical-align:-0.2455397pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.84467 14.0879 9.09021\\\" width=\\\"14.0879pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g198-14\\\"></use></g></svg> is incident to at least one member of <span><svg height=\\\"9.09021pt\\\" style=\\\"vertical-align:-0.2455397pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.84467 14.0879 9.09021\\\" width=\\\"14.0879pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g198-14\\\"></use></g></svg>.</span> A set <span><svg height=\\\"9.96448pt\\\" style=\\\"vertical-align:-1.11981pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.84467 25.199 9.96448\\\" width=\\\"25.199pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g198-14\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,17.568,0)\\\"></path></g></svg><span></span><svg height=\\\"9.96448pt\\\" style=\\\"vertical-align:-1.11981pt\\\" version=\\\"1.1\\\" viewbox=\\\"28.7811838 -8.84467 8.218 9.96448\\\" width=\\\"8.218pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,28.831,0)\\\"><use xlink:href=\\\"#g113-70\\\"></use></g></svg></span> is the locating edge-dominating set if for every two edges <span><svg height=\\\"12.4698pt\\\" style=\\\"vertical-align:-3.18147pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 13.227 12.4698\\\" width=\\\"13.227pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,5.317,3.132)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,10.263,0)\\\"></path></g></svg><span></span><svg height=\\\"12.4698pt\\\" style=\\\"vertical-align:-3.18147pt\\\" version=\\\"1.1\\\" viewbox=\\\"15.3571838 -9.28833 20.759 12.4698\\\" width=\\\"20.759pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,15.407,0)\\\"><use xlink:href=\\\"#g113-102\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,20.724,3.132)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,29.302,0)\\\"></path></g></svg><span></span><span><svg height=\\\"12.4698pt\\\" style=\\\"vertical-align:-3.18147pt\\\" version=\\\"1.1\\\" viewbox=\\\"39.7481838 -9.28833 44.703 12.4698\\\" width=\\\"44.703pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,39.798,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,44.296,0)\\\"><use xlink:href=\\\"#g113-70\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,55.21,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,65.746,0)\\\"><use xlink:href=\\\"#g198-14\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,79.682,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g></svg>,</span></span> the sets <span><svg height=\\\"12.4698pt\\\" style=\\\"vertical-align:-3.18147pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 40.706 12.4698\\\" width=\\\"40.706pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,10.91,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,15.408,0)\\\"><use xlink:href=\\\"#g113-102\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,20.725,3.132)\\\"><use xlink:href=\\\"#g50-50\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,25.672,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,33.075,0)\\\"></path></g></svg><span></span><svg height=\\\"12.4698pt\\\" style=\\\"vertical-align:-3.18147pt\\\" version=\\\"1.1\\\" viewbox=\\\"43.5621838 -9.28833 14.207 12.4698\\\" width=\\\"14.207pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,43.612,0)\\\"><use xlink:href=\\\"#g198-14\\\"></use></g></svg></span> and <span><svg height=\\\"12.4698pt\\\" style=\\\"vertical-align:-3.18147pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 40.706 12.4698\\\" width=\\\"40.706pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-79\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,10.91,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,15.408,0)\\\"><use xlink:href=\\\"#g113-102\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,20.725,3.132)\\\"><use xlink:href=\\\"#g50-51\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,25.672,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,33.075,0)\\\"><use xlink:href=\\\"#g117-60\\\"></use></g></svg><span></span><svg height=\\\"12.4698pt\\\" style=\\\"vertical-align:-3.18147pt\\\" version=\\\"1.1\\\" viewbox=\\\"43.5621838 -9.28833 14.207 12.4698\\\" width=\\\"14.207pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,43.612,0)\\\"><use xlink:href=\\\"#g198-14\\\"></use></g></svg></span> are nonempty and different. The edge domination number <svg height=\\\"12.7178pt\\\" style=\\\"vertical-align:-3.42947pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 29.3663 12.7178\\\" width=\\\"29.3663pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,5.668,3.132)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,11.29,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,15.788,0)\\\"><use xlink:href=\\\"#g113-72\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,24.681,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g></svg> of <svg height=\\\"8.8423pt\\\" style=\\\"vertical-align:-0.2064009pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 9.02496 8.8423\\\" width=\\\"9.02496pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-72\\\"></use></g></svg> is the minimum cardinality of all edge-dominating sets of <span><svg height=\\\"8.8423pt\\\" style=\\\"vertical-align:-0.2064009pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 9.02496 8.8423\\\" width=\\\"9.02496pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-72\\\"></use></g></svg>.</span> The purpose of this study is to determine the locating edge domination number of certain types of claw-free cubic graphs.\",\"PeriodicalId\":15840,\"journal\":{\"name\":\"Journal of Function Spaces\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Function Spaces\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/1182858\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Function Spaces","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/1182858","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用