{"title":"论与分式积分相关的努尔积分算子的某些类似物","authors":"Mojtaba Fardi, Ebrahim Amini, Shrideh Al-Omari","doi":"10.1155/2024/4565581","DOIUrl":null,"url":null,"abstract":"In this paper, we employ a <span><svg height=\"9.39034pt\" style=\"vertical-align:-3.42943pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 6.50656 9.39034\" width=\"6.50656pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg>-</span>Noor integral operator to perform a <span><svg height=\"9.39034pt\" style=\"vertical-align:-3.42943pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 6.50656 9.39034\" width=\"6.50656pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-114\"></use></g></svg>-</span>analogue of certain fractional integral operator defined on an open unit disc. Then, we make use of the Hadamard convolution product to discuss several related results. Also, we derive a class of convex functions by utilizing the <span><svg height=\"9.39034pt\" style=\"vertical-align:-3.42943pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 6.50656 9.39034\" width=\"6.50656pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-114\"></use></g></svg>-</span>fractional integral operator and apply the inspired presented theory of the differential subordination, to geometrically explore the most popular differential subordination properties of the aforementioned operator. In addition, we discuss an exciting inclusion for the given convex class of functions. Over and above, we investigate the <span><svg height=\"9.39034pt\" style=\"vertical-align:-3.42943pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 6.50656 9.39034\" width=\"6.50656pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-114\"></use></g></svg>-</span>fractional integral operator and obtain some applications for the differential subordination.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Certain Analogues of Noor Integral Operators Associated with Fractional Integrals\",\"authors\":\"Mojtaba Fardi, Ebrahim Amini, Shrideh Al-Omari\",\"doi\":\"10.1155/2024/4565581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we employ a <span><svg height=\\\"9.39034pt\\\" style=\\\"vertical-align:-3.42943pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -5.96091 6.50656 9.39034\\\" width=\\\"6.50656pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g></svg>-</span>Noor integral operator to perform a <span><svg height=\\\"9.39034pt\\\" style=\\\"vertical-align:-3.42943pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -5.96091 6.50656 9.39034\\\" width=\\\"6.50656pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-114\\\"></use></g></svg>-</span>analogue of certain fractional integral operator defined on an open unit disc. Then, we make use of the Hadamard convolution product to discuss several related results. Also, we derive a class of convex functions by utilizing the <span><svg height=\\\"9.39034pt\\\" style=\\\"vertical-align:-3.42943pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -5.96091 6.50656 9.39034\\\" width=\\\"6.50656pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-114\\\"></use></g></svg>-</span>fractional integral operator and apply the inspired presented theory of the differential subordination, to geometrically explore the most popular differential subordination properties of the aforementioned operator. In addition, we discuss an exciting inclusion for the given convex class of functions. Over and above, we investigate the <span><svg height=\\\"9.39034pt\\\" style=\\\"vertical-align:-3.42943pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -5.96091 6.50656 9.39034\\\" width=\\\"6.50656pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-114\\\"></use></g></svg>-</span>fractional integral operator and obtain some applications for the differential subordination.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/4565581\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/4565581","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
On Certain Analogues of Noor Integral Operators Associated with Fractional Integrals
In this paper, we employ a -Noor integral operator to perform a -analogue of certain fractional integral operator defined on an open unit disc. Then, we make use of the Hadamard convolution product to discuss several related results. Also, we derive a class of convex functions by utilizing the -fractional integral operator and apply the inspired presented theory of the differential subordination, to geometrically explore the most popular differential subordination properties of the aforementioned operator. In addition, we discuss an exciting inclusion for the given convex class of functions. Over and above, we investigate the -fractional integral operator and obtain some applications for the differential subordination.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.