{"title":"论与分式积分相关的努尔积分算子的某些类似物","authors":"Mojtaba Fardi, Ebrahim Amini, Shrideh Al-Omari","doi":"10.1155/2024/4565581","DOIUrl":null,"url":null,"abstract":"In this paper, we employ a <span><svg height=\"9.39034pt\" style=\"vertical-align:-3.42943pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 6.50656 9.39034\" width=\"6.50656pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg>-</span>Noor integral operator to perform a <span><svg height=\"9.39034pt\" style=\"vertical-align:-3.42943pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 6.50656 9.39034\" width=\"6.50656pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-114\"></use></g></svg>-</span>analogue of certain fractional integral operator defined on an open unit disc. Then, we make use of the Hadamard convolution product to discuss several related results. Also, we derive a class of convex functions by utilizing the <span><svg height=\"9.39034pt\" style=\"vertical-align:-3.42943pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 6.50656 9.39034\" width=\"6.50656pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-114\"></use></g></svg>-</span>fractional integral operator and apply the inspired presented theory of the differential subordination, to geometrically explore the most popular differential subordination properties of the aforementioned operator. In addition, we discuss an exciting inclusion for the given convex class of functions. Over and above, we investigate the <span><svg height=\"9.39034pt\" style=\"vertical-align:-3.42943pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 6.50656 9.39034\" width=\"6.50656pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-114\"></use></g></svg>-</span>fractional integral operator and obtain some applications for the differential subordination.","PeriodicalId":15840,"journal":{"name":"Journal of Function Spaces","volume":"53 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Certain Analogues of Noor Integral Operators Associated with Fractional Integrals\",\"authors\":\"Mojtaba Fardi, Ebrahim Amini, Shrideh Al-Omari\",\"doi\":\"10.1155/2024/4565581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we employ a <span><svg height=\\\"9.39034pt\\\" style=\\\"vertical-align:-3.42943pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -5.96091 6.50656 9.39034\\\" width=\\\"6.50656pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g></svg>-</span>Noor integral operator to perform a <span><svg height=\\\"9.39034pt\\\" style=\\\"vertical-align:-3.42943pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -5.96091 6.50656 9.39034\\\" width=\\\"6.50656pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-114\\\"></use></g></svg>-</span>analogue of certain fractional integral operator defined on an open unit disc. Then, we make use of the Hadamard convolution product to discuss several related results. Also, we derive a class of convex functions by utilizing the <span><svg height=\\\"9.39034pt\\\" style=\\\"vertical-align:-3.42943pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -5.96091 6.50656 9.39034\\\" width=\\\"6.50656pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-114\\\"></use></g></svg>-</span>fractional integral operator and apply the inspired presented theory of the differential subordination, to geometrically explore the most popular differential subordination properties of the aforementioned operator. In addition, we discuss an exciting inclusion for the given convex class of functions. Over and above, we investigate the <span><svg height=\\\"9.39034pt\\\" style=\\\"vertical-align:-3.42943pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -5.96091 6.50656 9.39034\\\" width=\\\"6.50656pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-114\\\"></use></g></svg>-</span>fractional integral operator and obtain some applications for the differential subordination.\",\"PeriodicalId\":15840,\"journal\":{\"name\":\"Journal of Function Spaces\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Function Spaces\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/4565581\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Function Spaces","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/4565581","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On Certain Analogues of Noor Integral Operators Associated with Fractional Integrals
In this paper, we employ a -Noor integral operator to perform a -analogue of certain fractional integral operator defined on an open unit disc. Then, we make use of the Hadamard convolution product to discuss several related results. Also, we derive a class of convex functions by utilizing the -fractional integral operator and apply the inspired presented theory of the differential subordination, to geometrically explore the most popular differential subordination properties of the aforementioned operator. In addition, we discuss an exciting inclusion for the given convex class of functions. Over and above, we investigate the -fractional integral operator and obtain some applications for the differential subordination.
期刊介绍:
Journal of Function Spaces (formerly titled Journal of Function Spaces and Applications) publishes papers on all aspects of function spaces, functional analysis, and their employment across other mathematical disciplines. As well as original research, Journal of Function Spaces also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.