{"title":"Correction to: Invasion of the stigma by oomycete pathogenic hyphae or pollen tubes: striking similarities and differences.","authors":"","doi":"10.1093/jxb/erae478","DOIUrl":"https://doi.org/10.1093/jxb/erae478","url":null,"abstract":"","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142828909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Letizia Cornaro, Camilla Banfi, Alex Cavalleri, Peter J van Dijk, Tatyana Radoeva, Mara Cucinotta, Lucia Colombo
{"title":"Apomixis at a high resolution: unravelling diplospory in Asteraceae.","authors":"Letizia Cornaro, Camilla Banfi, Alex Cavalleri, Peter J van Dijk, Tatyana Radoeva, Mara Cucinotta, Lucia Colombo","doi":"10.1093/jxb/erae477","DOIUrl":"https://doi.org/10.1093/jxb/erae477","url":null,"abstract":"<p><p>Apomictic plants are able to produce clonal seeds. This reproductive system allows the one-step fixation of any valuable trait for subsequent generations and would pave the way for a revolution in the agricultural system. Despite that, the introduction of apomixis in sexually reproducing crops has been hampered due to the difficulty in characterising its genetic regulation. In this study, we describe the high-resolution characterisation of apomeiosis in the apomictic model species Erigeron annuus, Chondrilla juncea, and Taraxacum officinale. We show that apomeiosis differs from meiosis in a few critical steps, including homologous chromosome synapsis and segregation during meiosis I. We then compare megasporogenesis in three T. officinale genetic backgrounds, showing that diplospory is superimposed on the sexual pathway without severely altering the expression of crucial meiotic genes. Our findings will contribute to the identification of pivotal players controlling this intriguing asexual reproductive strategy.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142823831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R Gimenez, L Lake, M C Cossani, R Ortega Martinez, J E Hayes, M F Dreccer, R French, J L Weller, V O Sadras
{"title":"Linking phenology, harvest index and genetics to improve chickpea grain yield.","authors":"R Gimenez, L Lake, M C Cossani, R Ortega Martinez, J E Hayes, M F Dreccer, R French, J L Weller, V O Sadras","doi":"10.1093/jxb/erae487","DOIUrl":"https://doi.org/10.1093/jxb/erae487","url":null,"abstract":"<p><p>Understanding phenology and its regulation is central for the agronomic adaptation of chickpea. We grew 24 chickpea genotypes in 12 environments to analyse: the environmental and genotypic drivers of phenology; associations between phenology and yield; and phenotypes associated with allelic variants of three flowering related candidate loci: CaELF3a; a cluster of three FT genes on chromosome 3; and an orthologue of the floral promoter GIGANTEA on chromosome 4. A simple model with 3 genotype-specific parameters explained the differences in flowering response to daylength. Environmental factors causing flower abortion, such as low temperature and radiation and high humidity, led to a longer flowering-to-podding interval. Late podding associated with poor partition to grain, limiting yield in favourable environments. Sonali, carrying the early allele of Caelf3a (elf3a), was generally the earliest to set pod, had low biomass but the highest harvest index. Genotypes combining the early variants of GIGANTEA and FT orthologues featured early reproduction and high harvest index, returning high yield in favourable environments. Our results emphasise the importance of pod set, rather than flowering, as a target for breeding, agronomic, and modelling applications.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142769502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yong-Jun He, Shuo Xu, Kai-Mei Zhang, Yang Zhang, Xiang-Jian Liu, Chen Liu
{"title":"Multiple gating steps in pollination lock the species specificity.","authors":"Yong-Jun He, Shuo Xu, Kai-Mei Zhang, Yang Zhang, Xiang-Jian Liu, Chen Liu","doi":"10.1093/jxb/erae488","DOIUrl":"https://doi.org/10.1093/jxb/erae488","url":null,"abstract":"<p><p>In flowering plants, pollen grain must undergo a series of critical processes, including adhesion, hydration, and germination, which are dependent on the stigma, to develop a pollen tube. This pollen tube then penetrates the stigma to reach the internal tissues of pistil, facilitating the transport of non-motile sperm cells to the embryo sac for fertilization. However, the dry stigma, characterized by the absence of an exudate that typically envelops the wet stigma, functions as a multi-layered filter in adhesion, hydration, germination and penetration that permits the acceptance of compatible pollen or tubes while rejecting incompatible ones, thereby protecting the embryo sac from ineffective fertilization and maintaining species specificity. Given the significance of these selective events, related research has consistently been at the forefront of reproductive studies, with notable advancements being made in recent times. In this review, we systematically synthesize the selective events and provide comprehensive, up-to-date summaries of occurrences on dry stigmas with a particular focus on the Brassicaceae family, following the chronological sequence of these events. Our objective is to update and elucidate the critical checkpoints within the pollination, identify unresolved questions, and propose potential avenues for future research in other plant families.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142823914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The role of RNA polymerase II transcript elongation factors in plant stress responses.","authors":"Klaus D Grasser","doi":"10.1093/jxb/erae472","DOIUrl":"https://doi.org/10.1093/jxb/erae472","url":null,"abstract":"<p><p>The elongation phase is a dynamic and highly regulated step of the RNA polymerase II (RNAPII) transcription cycle. A variety of transcript elongation factors (TEFs) comprising regulators of RNAPII activity, histone chaperones and modulators of histone modifications assist transcription through chromatin. Thereby TEFs substantially contribute to establish gene expression patterns during plant growth and development. Beyond that, recent research indicates that TEFs and RNAPII transcriptional elongation also play a key role in plant responses to environmental cues. Thus, certain TEFs (i.e. PAF1C, FACT, TFIIS) were found to mediate by different mechanisms transcriptional reprogramming to establish plant tolerance to abiotic conditions such as heat stress and elevated salt concentrations. At this, TEFs govern RNAPII elongation to generate the transcriptional output adequate for distinct environments. It is to be expected that future research in this developing field will reveal that the function of TEFs is involved in a growing number of plant responses to changing environmental conditions.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142769509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Márcia Gonçalves Dias, Thakshila Dharmasena, Carmen Gonzalez-Ferrer, Jan Eric Maika, Virginia Natali Miguel, Ruoqi Dou, Maria Camila Rodriguez Gallo, Melissa Bredow, Kristen Rose Siegel, R Glen Uhrig, Rüdiger Simon, Jacqueline Monaghan
{"title":"Catalytically inactive subgroup VIII receptor-like cytoplasmic kinases regulate the immune-triggered oxidative burst in Arabidopsis thaliana.","authors":"Márcia Gonçalves Dias, Thakshila Dharmasena, Carmen Gonzalez-Ferrer, Jan Eric Maika, Virginia Natali Miguel, Ruoqi Dou, Maria Camila Rodriguez Gallo, Melissa Bredow, Kristen Rose Siegel, R Glen Uhrig, Rüdiger Simon, Jacqueline Monaghan","doi":"10.1093/jxb/erae486","DOIUrl":"https://doi.org/10.1093/jxb/erae486","url":null,"abstract":"<p><p>Protein kinases are key components of multiple cell signaling pathways. Several receptor-like cytoplasmic kinases (RLCKs) have demonstrated roles in immune and developmental signaling across various plant species, making them of interest in the study of phosphorylation-based signal relay. Here, we present our investigation of a subgroup of RLCKs in Arabidopsis thaliana. Specifically, we focus on subgroup VIII RLCKs: MAZ and its paralog CARK6, as well as CARK7 and its paralog CARK9. We found that both MAZ and CARK7 associate with the calcium-dependent protein kinase CPK28 in planta, and furthermore that CPK28 phosphorylates both MAZ and CARK7 on multiple residues in areas that are known to be critical for protein kinase activation. Genetic analysis suggests redundant roles for MAZ and CARK6 as negative regulators of the immune-triggered oxidative burst. We find evidence that supports homo- and hetero-dimerization between CARK7 and MAZ, which may be a general feature of this subgroup. Multiple biochemical experiments suggest that neither MAZ nor CARK7 demonstrate catalytic protein kinase activity in vitro. Interestingly, we find that a mutant variant of MAZ incapable of protein kinase activity can complement maz-1 mutants, suggesting noncatalytic roles of MAZ in planta. Overall, our study identifies subgroup VIII RLCKs as new players in Arabidopsis immune signaling and highlights the importance of noncatalytic functions of protein kinases.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142823832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Johann Martínez-Lüscher, José Tomás Matus, Eric Gomès, Inmaculada Pascual
{"title":"Toward understanding grapevine responses to climate change: a multistress and holistic approach.","authors":"Johann Martínez-Lüscher, José Tomás Matus, Eric Gomès, Inmaculada Pascual","doi":"10.1093/jxb/erae482","DOIUrl":"https://doi.org/10.1093/jxb/erae482","url":null,"abstract":"<p><p>Recent research has extensively covered the effects of climate change factors, such as elevated CO2, rising temperatures and water deficit, on grapevine (Vitis spp.) biology. However, the assessment of the impacts of multiple climate change-related stresses on this crop remains complex due to the large number of interactive effects among environmental factors and the regulatory mechanisms that underlie these effects. Consequently, there is a substantial discrepancy between the number of studies conducted with a single or two factors simultaneously, and those with a more holistic approach. This review focuses on how climate change factors will coexist across the viticultural areas of the globe and summarises the main interactive mechanisms affecting crop performance. We highlight how the rise in temperatures will be enhanced when dealing with specific periods, such as the ripening months. Changes in crop phenology in response to temperature have been a major focus of most studies. However, how these physiological shifts may result in deleterious effects on yield and quality deserves further research. Rising temperatures will most certainly continue to represent the most imminent threat to viticulture due to its effects on grape phenology, composition and crop water requirements. Nevertheless, elevated CO2 may offer some relief through increased water use efficiency, as recent studies have shown. Within the repertoire of regulatory mechanisms that plants possess, hormones play a major role explaining the effects of combined stresses due to their crosstalk. In fact, growth regulators fine tune stress responses depending on the multiple stresses present. The paper focuses on the multistress responses mediated by ABA and jasmonate, and on the intricate interconnections of signalling among the different plant hormones.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142716129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ruonan Wang, Andrew F Bowerman, Yinglong Chen, Lu Zheng, Renfang Shen, Barry Pogson, Ping Lan
{"title":"Ethylene modulates wheat response to phosphate deficiency.","authors":"Ruonan Wang, Andrew F Bowerman, Yinglong Chen, Lu Zheng, Renfang Shen, Barry Pogson, Ping Lan","doi":"10.1093/jxb/erae483","DOIUrl":"https://doi.org/10.1093/jxb/erae483","url":null,"abstract":"<p><p>Ethylene involves in the response to P deficiency in some model plants, but its relevance to wheat remains limited. Following our recent study demonstrating the role of differentially expressed genes (DEGs) encoding ethylene response factors (ERFs) in response to P starvation in wheat, this study aims to investigate the remodelling of ethylene pathway and the physiological roles of ethylene in wheat under P deficiency using transcriptome analysis and the addition of exogenous ethylene analogue ethephon or ethylene inhibitors. ERFs with at least a two-fold change upon P deficiency were biasedly enriched on chromosome 4 B. A group of genes encoding ACC synthase and ACC oxidase were upregulated under P starvation, indicating an increase in ACC and ethylene content, which was verified by biochemical measurements and gas chromatography-mass spectrometry analysis. Under P deficiency, both root and shoot biomass decreased with the application of exogenous ethephon or ethylene inhibitors, while root fork numbers and root surface area decreased upon ethephon treatment. The phosphate (Pi) concentrations in roots and old leaves increased with ethephon treatment, and it's redistribution in roots and younger leaves was altered under Pi starvation. Our findings could serve as a guideline for breeding germplasm with high Pi efficiency.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142710378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Photoperiodic control of growth and reproduction in non-flowering plants.","authors":"Durga Prasad Biswal, Kishore Chandra Sekhar Panigrahi","doi":"10.1093/jxb/erae471","DOIUrl":"https://doi.org/10.1093/jxb/erae471","url":null,"abstract":"<p><p>Photoperiodic responses shape the plant fitness to the changing environment and are important regulators of growth, development and productivity. Photoperiod sensing is one of the most important cues to track seasonal variations. It is also a major cue for reproductive success. The photoperiodic information conveyed through the combined action of photoreceptors and circadian clock orchestrates an output response in plants. Multiple responses such as hypocotyl elongation, induction of dormancy and flowering are photoperiodically-regulated in seed plants such as angiosperms. Flowering plants such as Arabidopsis or rice have served as important model systems to understand the molecular players involved in photoperiodic-signaling. However, photoperiodic responses in non-angiosperm plants have not been investigated and documented in detail. Genomic and transcriptomic studies have provided evidences on the conserved and distinct molecular mechanisms across plant kingdom. In this review, we have attempted to compile and compare the photoperiodic responses in the plant kingdom with a special focus on the non-angiosperms.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142687237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Janlo M Robil, Prameela Awale, Paula McSteen, Norman B Best
{"title":"Gibberellins: Extending the Green Revolution.","authors":"Janlo M Robil, Prameela Awale, Paula McSteen, Norman B Best","doi":"10.1093/jxb/erae476","DOIUrl":"https://doi.org/10.1093/jxb/erae476","url":null,"abstract":"<p><p>The Green Revolution more than doubled crop yields and food production in crop species such as wheat and rice. This was primarily accomplished by altering the gibberellin (GA) signaling pathway to reduce plant height and prevent plants from falling over when growth was promoted with fertilizer application. Similar approaches have not been successfully accomplished in other grass crops species, such as maize, due to pleiotropic deleterious traits that arise from altering the GA pathway. This review highlights new findings in GA research across grass crop species. We have primarily focused on the developmental role of GAs in plant architecture and growth. We discuss how alteration of GA effects could be used to alter plant morphology and development of ideal plant ideotypes for grass crop species. To further extend the Green Revolution and improve food production from cereal crop species, targeted and tissue specific regulation of the GA pathway will have to be undertaken.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142681866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}