Elahe Tavakol, Vahid Shariati, Irene Maria Fontana, Marta Binaghi, Hagen Stellmach, Bettina Hause, Gerit Bethke, Hatice Bilgic, Jayanand Boddu, Ron Okagaki, Shane Heinen, Gary J Muehlbauer, Laura Rossini
{"title":"Pleiotropic effects of barley BLADE-ON-PETIOLE gene Uniculme4 on plant architecture and the jasmonic acid pathway.","authors":"Elahe Tavakol, Vahid Shariati, Irene Maria Fontana, Marta Binaghi, Hagen Stellmach, Bettina Hause, Gerit Bethke, Hatice Bilgic, Jayanand Boddu, Ron Okagaki, Shane Heinen, Gary J Muehlbauer, Laura Rossini","doi":"10.1093/jxb/eraf068","DOIUrl":null,"url":null,"abstract":"<p><p>Plant architecture is a key determinant of crop yield, and understanding the genetic basis of its regulation is crucial for crop improvement. BLADE-ON-PETIOLE (BOP) genes are known to play a fundamental role in shaping plant architecture across diverse species. In this study, we demonstrate pleiotropic effects of the barley BOP gene Uniculme4 (Cul4) on various aspects of plant architecture, including plant height, culm diameter, and grain traits. Accordingly, Cul4 is broadly expressed in different tissues and developmental stages. Comparing transcriptome profiles of cul4 mutant and wild-type plants, we uncover a novel link between Cul4 and the jasmonic acid (JA) biosynthetic pathway. Our findings demonstrate that proper Cul4 function is required to repress JA biosynthesis, with cul4 mutants exhibiting increased levels of JA and its precursor 12-oxo-phytodienoic acid. Up-regulation of WRKY and bHLH transcription factors shows JA signalling is also impacted by Cul4. Additionally, our study sheds light on the role of Cul4 in flowering time regulation, potentially through its interaction with florigen-like genes. This research enhances our understanding of the mechanisms and pathways acting downstream of BOP genes.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/eraf068","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Plant architecture is a key determinant of crop yield, and understanding the genetic basis of its regulation is crucial for crop improvement. BLADE-ON-PETIOLE (BOP) genes are known to play a fundamental role in shaping plant architecture across diverse species. In this study, we demonstrate pleiotropic effects of the barley BOP gene Uniculme4 (Cul4) on various aspects of plant architecture, including plant height, culm diameter, and grain traits. Accordingly, Cul4 is broadly expressed in different tissues and developmental stages. Comparing transcriptome profiles of cul4 mutant and wild-type plants, we uncover a novel link between Cul4 and the jasmonic acid (JA) biosynthetic pathway. Our findings demonstrate that proper Cul4 function is required to repress JA biosynthesis, with cul4 mutants exhibiting increased levels of JA and its precursor 12-oxo-phytodienoic acid. Up-regulation of WRKY and bHLH transcription factors shows JA signalling is also impacted by Cul4. Additionally, our study sheds light on the role of Cul4 in flowering time regulation, potentially through its interaction with florigen-like genes. This research enhances our understanding of the mechanisms and pathways acting downstream of BOP genes.
期刊介绍:
The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology.
Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.