Journal of Environmental Chemical Engineering最新文献

筛选
英文 中文
Neutralizing the threat: A comprehensive review of chemical warfare agent decontamination strategies 消除威胁:全面审查化学战剂去污战略
IF 7.4 2区 工程技术
Journal of Environmental Chemical Engineering Pub Date : 2024-09-27 DOI: 10.1016/j.jece.2024.114243
Miroslav Labaška , Miroslav Gál , Tomáš Mackuľak , Jozef Švorec , Jozef Kučera , Jozef Helenin , Veronika Svitková , Jozef Ryba
{"title":"Neutralizing the threat: A comprehensive review of chemical warfare agent decontamination strategies","authors":"Miroslav Labaška ,&nbsp;Miroslav Gál ,&nbsp;Tomáš Mackuľak ,&nbsp;Jozef Švorec ,&nbsp;Jozef Kučera ,&nbsp;Jozef Helenin ,&nbsp;Veronika Svitková ,&nbsp;Jozef Ryba","doi":"10.1016/j.jece.2024.114243","DOIUrl":"10.1016/j.jece.2024.114243","url":null,"abstract":"<div><div>Chemical warfare agents (CWAs) represent a significant threat, necessitating the development of effective decontamination strategies. This article reviews various decontamination methods, analysing their respective strengths and weaknesses against chemical warfare agents including vesicants: sulfur mustard (bis(2-chloroethyl) sulfide, HD; nitrogen mustards; bis(2-chloroethyl)ethylamine (HN1), bis (2-chloroethyl)methylamine (HN2), tris(2-chloroethyl)amine (NH3) and Lewisite; nerve agents sarin (isopropyl methylphosphonofluoridate, GB), soman (pinacolyl methylphosphonofluoridate, GD), tabun (Ethyl <em>N,N’</em>-dimethylphosphoroamidocyanidate, GA) and VX, (ethyl <em>N-</em>2-diisopropyl aminoethyl methylphosphonothiolate); vomiting agent Clark I (diphenylchloroarsine, DA). Traditional decontamination approaches include hydrolysis, which utilises water for CWA breakdown, and chlorine-based decontamination, known for its effectiveness despite environmental drawbacks. Advanced oxidation processes (AOPs) offer efficient CWA destruction using highly reactive radicals but can be complex to implement. Emerging materials such as metal-organic frameworks (MOFs) have the potential to revolutionise the field of chemical warfare agent decontamination due to their high surface area and tunable structures. Additionally, polyoxometalates (POMs), zeolites, and reactive polymers are being investigated for their catalytic and adsorptive properties in CWA degradation. This review highlights the necessity for continuous research to develop efficient, safe, and environmentally friendly decontamination methods. The potential of combining existing approaches and tailoring novel materials, such as MOFs and reactive polymers, paves the way for significant advancements in CWA decontamination.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"12 6","pages":"Article 114243"},"PeriodicalIF":7.4,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142357453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of bifunctional copolymeric nanofibers with selective extracting U(VI) from the solution and antibacterial property 从溶液中选择性提取铀(VI)并具有抗菌性能的双功能共聚纳米纤维的合成
IF 7.4 2区 工程技术
Journal of Environmental Chemical Engineering Pub Date : 2024-09-27 DOI: 10.1016/j.jece.2024.114229
Jingbo Zhou , Yuedi Zhou , Zhen Zhang , Changqi Heng , Zongxian Jiao , Hongxia Zhang
{"title":"Synthesis of bifunctional copolymeric nanofibers with selective extracting U(VI) from the solution and antibacterial property","authors":"Jingbo Zhou ,&nbsp;Yuedi Zhou ,&nbsp;Zhen Zhang ,&nbsp;Changqi Heng ,&nbsp;Zongxian Jiao ,&nbsp;Hongxia Zhang","doi":"10.1016/j.jece.2024.114229","DOIUrl":"10.1016/j.jece.2024.114229","url":null,"abstract":"<div><div>Facing the problem of future nuclear fuel shortage, developing high-performance adsorbent materials is key. In this work, the amidoxime group/imidazole functionalized ionic liquid copolymer fibers containing bromide salts, and fluoroborate salts (namely P(AO/VEIMBr)<sub>8</sub> and P(AO/VEIMBF<sub>4</sub>)<sub>6</sub>) were prepared by a one-pot method and free radical polymerization, hydroxyl amination reaction and electrostatic spinning, and characterized by SEM, FT-IR, and <sup>1</sup> H NMR. The influence of solid-liquid ratio, ionic strength, and adsorption time on the adsorption performance was investigated by batch adsorption experiments. In the meanwhile, the adsorption kinetics and thermodynamic processes of U(VI) on the copolymer fibers was also studied. Adsorption mechanism of U (VI) on polymer fibers was explored by XPS spectroscopic analysis combined with DFT method. Finally, the antimicrobial properties of the copolymer fibers were tested. The experimental results showed that the polymer nanofibers synthesized for U(VI) has a fast adsorption, high adsorption capacity at ionic strength close to seawater, and excellent reusability. The adsorption process conformed to the pseudo-second-order kinetic model and Langmuir model, which indicated that chemical adsorption and monolayer adsorption are dominant for adsorption U(VI) on the polymer nanofibers, and exhibits the highest Uranium adsorption capacity (76.92 mg/g and 81.96 mg/g at pH=8.1+0.1, respectively). XPS result showed the amine nitrogen and oxime oxygen in the amidoxime functional group were coordinated with uranyl(VI) ions. The antibacterial experiments showed that the copolymer fibers have antimicrobial properties and the antibacterial rate is over 90 %. Therefore, the nanofibers may be a promising material for extracting uranium from the weak alkaline wastewater or seawater.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"12 6","pages":"Article 114229"},"PeriodicalIF":7.4,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142357456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanotechnology driven biorecognition element and label free sensing of pesticides 纳米技术驱动的生物识别元件和无标记农药传感
IF 7.4 2区 工程技术
Journal of Environmental Chemical Engineering Pub Date : 2024-09-27 DOI: 10.1016/j.jece.2024.114218
Chumki Praharaj, Seema Nara
{"title":"Nanotechnology driven biorecognition element and label free sensing of pesticides","authors":"Chumki Praharaj,&nbsp;Seema Nara","doi":"10.1016/j.jece.2024.114218","DOIUrl":"10.1016/j.jece.2024.114218","url":null,"abstract":"<div><div>Pesticide detection is crucial for ensuring food safety and environmental protection. Traditional methods of detection often rely on biorecognition elements and labels, which can be unstable in harsh environment, time-consuming, expensive and adds complexity to the assay. The review starts out by giving a quick synopsis of these assays and their shortcomings. The review subsequently builds upon novel, biorecognition element free, and label free sensors leveraging nanoparticles for the rapid and sensitive detection of pesticides. Nanoparticles are integrated into a sensor platform that operates through aggregation based colorimetric, surface plasmon resonance (SPR), surface enhanced Raman spectroscopy (SERS) electrochemical or other detection mechanisms. These sensors rely upon the unique optical, electronic and catalytic properties of nanoparticles, which undergo measurable changes in response to pesticide molecules. These changes are monitored in real-time, providing a direct correlation between pesticide concentration and sensor response without the need for complex biorecognition elements or labels. Finally, the advantages, limitations, potential and challenges of biorecognition element free, and label free sensors are discussed through authors perspective.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"12 6","pages":"Article 114218"},"PeriodicalIF":7.4,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142416261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microalgae stress sensing through oxidative phosphorylation drives bioenergy potential: Deciphering mechanisms and future opportunities 微藻类通过氧化磷酸化传感应激,推动生物能源潜力:解密机制与未来机遇
IF 7.4 2区 工程技术
Journal of Environmental Chemical Engineering Pub Date : 2024-09-26 DOI: 10.1016/j.jece.2024.114266
Adamu Yunusa Ugya , Xiang Li , Hui Chen , Qiang Wang
{"title":"Microalgae stress sensing through oxidative phosphorylation drives bioenergy potential: Deciphering mechanisms and future opportunities","authors":"Adamu Yunusa Ugya ,&nbsp;Xiang Li ,&nbsp;Hui Chen ,&nbsp;Qiang Wang","doi":"10.1016/j.jece.2024.114266","DOIUrl":"10.1016/j.jece.2024.114266","url":null,"abstract":"<div><div>The use of microalgal resources as a potential biomaterial for bioenergy production has captured significant attention but requires process optimization to improve efficiency and enhance economic viability. The integral part of microalgae process optimization is to understand how they undergo epigenetic changes as a means of sensing environmental stresses, especially through oxidative phosphorylation. The ability of microalgae to respond to different stress conditions tends to cause epigenetic changes that influence the bioenergy potential of microalgae. This comprehensive review delves into the importance of understanding these epigenetic changes in microalgae and how they can be manipulated to enhance bioenergy potential. The review shows how epigenetic changes in oxidative phosphorylation cause a change that affects cellular energy homeostasis and signal transduction pathways, leading to altered metabolic profiles and stress adaptation strategies. This metabolic change was linked to the change in the gene expression level of different proteins, including Nicotinamide adenine dinucleotide (NADH) dehydrogenase, cytochrome, and ATPase synthase. The epigenetic change in this protein trigger a change in energy production and photosynthesis efficiency in microalgae, which are vital for the biosynthesis and accumulation of important metabolites useful for biofuel production. The manipulation of these proteins will facilitate the redirection of metabolic flux towards increasing lipid accumulation in microalgae, leading to increased biofuel potential.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"12 6","pages":"Article 114266"},"PeriodicalIF":7.4,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142416258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-radical activation of peracetic acid by Fe-Co sulfide modified activated carbon for the degradation of refractory organic matter 硫化钴铁改性活性炭对过氧乙酸的非辐射活化,用于降解难降解有机物
IF 7.4 2区 工程技术
Journal of Environmental Chemical Engineering Pub Date : 2024-09-26 DOI: 10.1016/j.jece.2024.114258
Yaqian Zhang , Zhaowen Cheng , Qingyan Zhang , Rongzhong Wang , Xuemei Sun , Wenjing Xue , Qingyi Zeng
{"title":"Non-radical activation of peracetic acid by Fe-Co sulfide modified activated carbon for the degradation of refractory organic matter","authors":"Yaqian Zhang ,&nbsp;Zhaowen Cheng ,&nbsp;Qingyan Zhang ,&nbsp;Rongzhong Wang ,&nbsp;Xuemei Sun ,&nbsp;Wenjing Xue ,&nbsp;Qingyi Zeng","doi":"10.1016/j.jece.2024.114258","DOIUrl":"10.1016/j.jece.2024.114258","url":null,"abstract":"<div><div>Recently, the non radical activation system had attracted much attention due to its strong anti-interference ability. In this study, a novel FeCo<sub>2</sub>S<sub>4</sub>/activated carbon (AC) catalyst was prepared and used to construct a non radical dominated degradation system. Due to the electron-donating groups (C-OH) of AC and the conversion of free radicals generated from the activation of PAA by iron (Fe) and cobalt (Co) ions, a large amount of singlet oxygen (<sup>1</sup>O<sub>2</sub>) were produced, making the activation system possessed excellent universality and applicability for the removal of organic pollutants. Within 5 min, about 89.87 % of tetracycline hydrochloride (TCH) was removed in FeCo<sub>2</sub>S<sub>4</sub> /AC + PAA. After only 20 min of reaction, the TCH removal efficiency reached 94.12 %, accompany with the reaction rate reached 0.099 min<sup>−1</sup>. Other organic pollutants including ibuprofen (IBU), sulfamethoxazole (SMX), ciprofloxacin (CIP), p-nitrophenol (PNP) and atrazine (ATZ) were also efficiently removed within 20 min, with the removal efficiencies were 92.0 %, 91.5 %, 89.4 %, 88.3 %, and 84.5 %, respectively. When the solution pH changed from 5.01 to 9.48, FeCo<sub>2</sub>S<sub>4</sub> /AC also showed excellent catalytic performances, with the TCH removal rates were maintained at over 85.18 %. Moreover, the removal rate of TCH still reached 90.23 % after 5 recycles. This study offered an efficient non-radical peracetic acid (PAA) activation system, which can be effectively used to degrade refractory organic pollutants from complex water environment.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"12 6","pages":"Article 114258"},"PeriodicalIF":7.4,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142323889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Better waste utilization: Mg-modified biochar from wetland plant waste for phosphorus removal and carbon sequestration 更好地利用废物:从湿地植物废弃物中提取镁改性生物炭,用于除磷和固碳
IF 7.4 2区 工程技术
Journal of Environmental Chemical Engineering Pub Date : 2024-09-26 DOI: 10.1016/j.jece.2024.114264
Tingting Wang , Xinxi Fu , Yonghua Chen , Jingdong Wu , Yuanyuan Wang , Honghai Wan , Xiangyu Li , Lizhen Zhao
{"title":"Better waste utilization: Mg-modified biochar from wetland plant waste for phosphorus removal and carbon sequestration","authors":"Tingting Wang ,&nbsp;Xinxi Fu ,&nbsp;Yonghua Chen ,&nbsp;Jingdong Wu ,&nbsp;Yuanyuan Wang ,&nbsp;Honghai Wan ,&nbsp;Xiangyu Li ,&nbsp;Lizhen Zhao","doi":"10.1016/j.jece.2024.114264","DOIUrl":"10.1016/j.jece.2024.114264","url":null,"abstract":"<div><div>Withered wetland plants have become a treat to water ecological security. To address the issue of waste biomass disposal, a typical wetland plant, <em>Hydrocotyle vulgaris</em>, was utilized to produce Mg-modified biochar (MBC) for efficient phosphorus (P) removal and stable carbon sequestration. The adsorption behavior fit Langmuir isotherm and the pseudo second-order kinetic models, which revealed the nature of monolayer chemical adsorption of MBC. The removal of P was achieved through physical diffusion, Mg<sup>2+</sup> precipitates, surface complexation and electrostatic attraction. Based on the analysis of thermodynamics models, it can be concluded that the adsorption behavior of P by MBC was spontaneous and endothermic. The MBC exhibited a maximum phosphorus adsorption capacity of 314.048 mg/g. Concurrently, the specific surface area was enhanced from 529.974 m<sup>2</sup>/g to 931.019 m<sup>2</sup>/g. The research has also recorded valuable data about the carbon sequestration potential of MBC with the carbon content reaching 0.51 g per g of biochar. It was found from the outcomes that Mg-modified biochar had outstanding carbon sequestration potential and significantly improved P removal efficiency.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"12 6","pages":"Article 114264"},"PeriodicalIF":7.4,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142323890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microporous layer in proton exchange membrane fuel cells: Advancement in materials and properties 质子交换膜燃料电池中的微孔层:材料和性能方面的进展
IF 7.4 2区 工程技术
Journal of Environmental Chemical Engineering Pub Date : 2024-09-26 DOI: 10.1016/j.jece.2024.114220
Muhamad Ariff Amir Hamzah , Siti Kartom Kamarudin , Mahnoush Beygisangchin , Norazuwana Shaari , Roshasnorlyza Hazan , Zulfirdaus Zakaria
{"title":"Microporous layer in proton exchange membrane fuel cells: Advancement in materials and properties","authors":"Muhamad Ariff Amir Hamzah ,&nbsp;Siti Kartom Kamarudin ,&nbsp;Mahnoush Beygisangchin ,&nbsp;Norazuwana Shaari ,&nbsp;Roshasnorlyza Hazan ,&nbsp;Zulfirdaus Zakaria","doi":"10.1016/j.jece.2024.114220","DOIUrl":"10.1016/j.jece.2024.114220","url":null,"abstract":"<div><div>The microporous layer (MPL) is one of the components in the membrane electrode assembly (MEA), the heart of a proton exchange membrane fuel cell (PEMFC), and plays a vital role in managing mass transport and water management in PEMFCs, where these two aspects can negatively impact fuel cell performance if not tackled properly. Thus, the development of MPLs, in terms of material used, preparation methods, and its physical characteristics, has been widely investigated in recent years, to ensure its functionality for improved fuel cell performance. This paper aims to highlight recent MPL studies, focusing on the aforementioned development factors. This paper also addresses the challenges for optimum MPL performance and future trends in MPL development. Thus, the past findings and future outlooks discussed in this paper can act as a useful guideline for future works related to MPL development, to produce good quality MPLs for enhanced fuel cell performance.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"12 6","pages":"Article 114220"},"PeriodicalIF":7.4,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142416693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the competitive mechanism between SO2 and PCDD/Fs on activated carbon adsorption 揭示二氧化硫和多氯二苯并对二恶英/多氯二苯并呋喃在活性炭吸附上的竞争机制
IF 7.4 2区 工程技术
Journal of Environmental Chemical Engineering Pub Date : 2024-09-25 DOI: 10.1016/j.jece.2024.114254
Jianwen Lai , Peiyue Wang , Yunfeng Ma , Zhongkang Han , Heidelore Fiedler , Xiaoqing Lin , Xiaodong Li
{"title":"Unveiling the competitive mechanism between SO2 and PCDD/Fs on activated carbon adsorption","authors":"Jianwen Lai ,&nbsp;Peiyue Wang ,&nbsp;Yunfeng Ma ,&nbsp;Zhongkang Han ,&nbsp;Heidelore Fiedler ,&nbsp;Xiaoqing Lin ,&nbsp;Xiaodong Li","doi":"10.1016/j.jece.2024.114254","DOIUrl":"10.1016/j.jece.2024.114254","url":null,"abstract":"<div><div>In municipal solid waste incineration (MSWI) plants, activated carbon (AC) adsorption is the key technique for eliminating Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) from flue gases. This research thoroughly investigates the potential competitive adsorption between SO<sub>2</sub> and PCDD/Fs and examines how adsorption at the center and the edge of the AC layer impacts the adsorption process. The findings show a decline in the removal efficiency of PCDD/Fs from 86.8 % to 84.2 % and further to 74.4 % when using SO<sub>2</sub> pre-treated (AC-A3) and H<sub>2</sub>SO<sub>4</sub>-impregnated (AC-B2) activated carbon, respectively. Multiple characterization methods reveal that sulfur elements occupy active sites within the inner pores of the activated carbon, reducing the availability of its pore structure, particularly affecting microporous more than mesoporous structures. DFT calculations suggest that the π-π EDA effect facilitates the adsorption of 2,3,7,8-Tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD), whereas dispersion force drive SO<sub>2</sub> adsorption. Comparisons among various oxygenated functional groups show that the organic acid anhydride (C<img>O-C<img>O) has better adsorption selectivity toward TCDD and less adsorption to SO<sub>2</sub>. This study provides a novel perspective on the adsorption mechanisms of PCDD/Fs on AC and the competitive dynamics of sulfur in the flue gas.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"12 6","pages":"Article 114254"},"PeriodicalIF":7.4,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142323885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The removal of pollutants from synthetic bathroom greywater by coagulation-flocculation and filtration as a fit-for-purpose method 通过混凝-絮凝和过滤去除合成浴室中水污染物的适用方法
IF 7.4 2区 工程技术
Journal of Environmental Chemical Engineering Pub Date : 2024-09-25 DOI: 10.1016/j.jece.2024.114250
Andrea Szabolcsik-Izbéki , Ildikó Bodnár , István Fábián
{"title":"The removal of pollutants from synthetic bathroom greywater by coagulation-flocculation and filtration as a fit-for-purpose method","authors":"Andrea Szabolcsik-Izbéki ,&nbsp;Ildikó Bodnár ,&nbsp;István Fábián","doi":"10.1016/j.jece.2024.114250","DOIUrl":"10.1016/j.jece.2024.114250","url":null,"abstract":"<div><div>It has been demonstrated that treated bathroom greywater (TBGW) is a useful substitute for fresh water for non-potable applications in households. Reuse of TBGW for irrigation, toilet flushing, car washing etc. offers a good opportunity to save drinking water and meet the sustainable development goals (SDGs). In this study, synthetic bathroom greywater (SBGW) was compiled in a controlled manner and used as a substitute for bathroom GW. Detailed statistical analysis also was performed to confirm the similarity between real and synthetic BGWs. SBGW is suitable for testing efficiency of applied treatment methods. It was confirmed that coagulation–flocculation with iron(III) chloride and sand filtration was the most effective method of the tested 7 systems. The best and affordable treatment combination generates good-quality treated SBGW (TSBGW) (pH = 7.54 ± 0.29, TURB = 0.54 ± 0.49 NTU, BOD<sub>5</sub> = 21 ± 10 mgL<sup>−1</sup>, COD = 32 ± 11 mgL<sup>−1</sup>, and TOC = 12.7 ± 6.7 mgL<sup>−1</sup>) for different non-potable purposes by complying with the regulated limit values for reuse. The elemental analysis of raw, TSBGW and tap water (TW) samples by MP-AES method provided further support for safe recycling. This study leads to the conclusion that the generation of TBGW by fit-for-purpose treatment can effectively meet the circular economy goals at household level. The recycling of GW is of limited importance in the European Union (EU) and legal regulations are not available in many countries. This study provides novel support for regulating the reuse of water in Eastern European countries.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"12 6","pages":"Article 114250"},"PeriodicalIF":7.4,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142357457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Differential insights into the distribution characteristics of archaeal communities and their response to typical pollutants in the sediments and soils of deep-water reservoir 对深水水库沉积物和土壤中古生物群落分布特征及其对典型污染物反应的不同见解
IF 7.4 2区 工程技术
Journal of Environmental Chemical Engineering Pub Date : 2024-09-25 DOI: 10.1016/j.jece.2024.114256
Zelun Jiang , Qianli Huang , Kangping Cui , Guangwei Deng , Yuansheng Huang , Kaifeng Yu , Chen-Xuan Li , Yihan Chen
{"title":"Differential insights into the distribution characteristics of archaeal communities and their response to typical pollutants in the sediments and soils of deep-water reservoir","authors":"Zelun Jiang ,&nbsp;Qianli Huang ,&nbsp;Kangping Cui ,&nbsp;Guangwei Deng ,&nbsp;Yuansheng Huang ,&nbsp;Kaifeng Yu ,&nbsp;Chen-Xuan Li ,&nbsp;Yihan Chen","doi":"10.1016/j.jece.2024.114256","DOIUrl":"10.1016/j.jece.2024.114256","url":null,"abstract":"<div><div>This study focused on the Fengshuba deep-water reservoir in South China, and systematically explored the distribution characteristics of archaeal communities in the sediment and soil in water level fluctuation zones and their response mechanisms to typical pollutants. The results show that <em>Euryarchaeota</em> and <em>Bathyarchaeota</em> are the dominant phyla in sediment archaeal communities, while <em>Thaumarchaeota</em> dominates in soil. The absolute abundance of archaea in the sediments was lower than that in the soils, but the diversity and richness of archaeal communities were higher than those in the soils. Seasonal changes affected the composition of sediment archaeal communities, and the archaeal compositions in the two habitats also showed significant differences. The neutral community model indicates that the assembly of archaeal communities in sediments is mainly governed by stochastic processes, while deterministic processes dominate in soils. The responses of archaeal communities to pollutants in the two habitats were significantly different. Among them, the carbon-nitrogen ratio and tetracycline concentration are the key factors driving seasonal changes in the archaeal communities in the sediment. Structural equation modeling further showed that the archaeal community in the sediment was positively correlated with organochlorine pesticides and antibiotics, while the archaeal community in the soil showed an opposite trend. This study provides new insights into the complexity of interactions between archaeal communities and typical contaminants in reservoir systems.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"12 6","pages":"Article 114256"},"PeriodicalIF":7.4,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142323880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信