{"title":"Microstructural Design of Graphene Nanocomposites for Improved Electrical Conductivity","authors":"A. Gbaguidi, S. Namilae, Daewon Kim","doi":"10.1115/1.4051307","DOIUrl":"https://doi.org/10.1115/1.4051307","url":null,"abstract":"\u0000 The electrical conductivity and percolation onset of graphene-based nanocomposites are studied by varying both planar and transversal aspect ratios of graphene nanoplatelets (GNP) fillers using a three-dimensional stochastic percolation-based model. The graphene nanoplatelets are modeled as elliptical fillers to enable planar aspect ratio variations. We find that decreasing the graphite’s thickness results in an exponential performance improvement of the nanocomposites, in contrast to a linear improvement obtained when the planar aspect ratio is increased, for the same filler volume. Furthermore, we show that hybrid nanocomposites fabricated with partial replacement of GNP by carbon nanotube (CNT) may improve the electrical performance of the GNP monofiller composites. Improvement or deterioration of the electrical properties is mainly based on the morphology and content of the fillers mixed in the hybrids. Nonetheless, using a minimal amount of CNT for substitution always leads to the highest improvement in conductivity in the hybrids, while additional CNTs only lead to smaller improvement at best or even deterioration. The results are validated against experimental works and offer useful insights for the fabrication of highly conductive nanocomposites.","PeriodicalId":15700,"journal":{"name":"Journal of Engineering Materials and Technology-transactions of The Asme","volume":"22 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91218929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. A. Raza, M. Khan, M. R. A. Karim, R. Ali, M. Naseer, S. Z. Abbas, M. Ahmad
{"title":"Effect of Zirconium Oxide Reinforcement on Microstructural, Electrochemical, and Mechanical Properties of TiNi Alloy Produced via Powder Metallurgy Route","authors":"S. A. Raza, M. Khan, M. R. A. Karim, R. Ali, M. Naseer, S. Z. Abbas, M. Ahmad","doi":"10.1115/1.4051308","DOIUrl":"https://doi.org/10.1115/1.4051308","url":null,"abstract":"\u0000 Equiatomic TiNi alloy composites, reinforced with 0, 5, 10, and 15 vol% ZrO2, were synthesized using conventional sintering approach. Equiatomic TiNi pre-alloyed powder and ZrO2 powder were mixed in planetary ball mill for 6 h followed by cold compaction and pressure-less sintering, respectively. The sintered density was found to vary inversely with the addition of ZrO2 content. The X-ray diffraction (XRD) spectra have shown the formation of multiple-phases which were resulted from the decomposition of the B19′ and B2 phases of the equiatomic TiNi alloy due to the addition of ZrO2 and higher diffusion rate of Ni than that of Ti in the alloy composite. An increase in hardness was noted due to the addition of ZrO2, measured by micro and nanoindentation techniques. Potentiodynamic polarization scan revealed a 10% decrease in the corrosion rate of the composite containing 10 vol% ZrO2. Electrochemical impedance spectroscopy (EIS) results indicated an increase in passive layer resistance (Rcoat) due to the increase in charge transfer resistance (Rct) caused by the reduced leaching of ions from the surface.","PeriodicalId":15700,"journal":{"name":"Journal of Engineering Materials and Technology-transactions of The Asme","volume":"25 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86030362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Noha M. Hassan, M. Antar, Natalie Saleem, Sara Aboukhelil, Lina Ghonim
{"title":"Effect of Synthesis Procedure on Particle Dispersion and Hardness of Al- Sic Functionally Graded Metal Matrix Composite","authors":"Noha M. Hassan, M. Antar, Natalie Saleem, Sara Aboukhelil, Lina Ghonim","doi":"10.1115/1.4052631","DOIUrl":"https://doi.org/10.1115/1.4052631","url":null,"abstract":"\u0000 Fabrication of Functionally Graded Metal Matrix Composites (FGMMC) especially with high ceramic reinforcement's volume fraction is highly challenging. Depending on the processing technique and process parameters various defects may arise. This research aims to find the best procedure to make FGMMCs with the highest quality and minimum cost. A new method is proposed that incorporates lost-foam and melt infiltration with semicentrifugal casting to produce FGMMC. Experiments were performed to in-situ fabricate 6061-Aluminum alloy reinforced with gradient distributed Silicon carbide particles (Al/SiC FGMMC). Effect of SiC %, Al pouring temperature and rotational speed on the fabricated specimens hardness and reinforcement gradient were investigated using design of experiments and regression analysis. Results reveal the optimum procedure and process settings based on desired properties/gradient required. Mathematical model formulated captures the effect of these process parameters on process cost, and cost of poor quality. Improper selection of those parameters may lead to extensive losses due cost of poor quality which is 12 times higher than the material cost. The proposed manufacturing process proved satisfactory in ensuring proper dispersion. A desirability function can by used to determine the process parameters and volume fraction that minimizes the defects and gives superior properties for a specific application.","PeriodicalId":15700,"journal":{"name":"Journal of Engineering Materials and Technology-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":1.2,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44927486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Utzeri, A. Bhagavatam, E. Mancini, G. Dinda, M. Sasso, G. Newaz
{"title":"Quasi-Static and Dynamic Behavior of Inconel 625 Obtained by Laser Metal Deposition: Experimental Characterization and Constitutive Modeling","authors":"M. Utzeri, A. Bhagavatam, E. Mancini, G. Dinda, M. Sasso, G. Newaz","doi":"10.1115/1.4051087","DOIUrl":"https://doi.org/10.1115/1.4051087","url":null,"abstract":"\u0000 Laser metal deposition (LMD) is an additive manufacturing process with an extreme potential in large-scale metal production. Among the printable metals, the Inconel 625 has found a wide variety of cutting-edge applications in the aerospace, defense, and space sectors. Thus, knowledge of mechanical properties under quasi-static and dynamic conditions is fundamental. In this work, the quasi-static and dynamic compression behavior of Inconel 625 obtained by LMD is presented. The curves of printed Inconel 625 showed a change in slope in the work hardening phase, which is due to the mechanics of the dislocation motion. Therefore, a modified two-stage (TS) Hollomon power-law is proposed to model this specific mechanical behavior, which identifies a threshold strain that delimit two different hardening behaviors. Furthermore, Johnson–Cook and Cowper–Symonds models were used to represent the effect of strain rate and temperature on the material properties. A variable strain rate sensitivity along the compression strain was found. Hence, double sensitivity terms were introduced into the TS Hollomon power-law, allowing to reproduce the dynamic behavior of Inconel 625.","PeriodicalId":15700,"journal":{"name":"Journal of Engineering Materials and Technology-transactions of The Asme","volume":"12 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88670240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental and Molecular Dynamics Simulation-Based Investigations on Hydrogen Embrittlement Behavior of Chromium Electroplated 4340 Steel","authors":"Ozge Dogan, M. F. Kapci, V. Esat, B. Bal","doi":"10.1115/1.4051400","DOIUrl":"https://doi.org/10.1115/1.4051400","url":null,"abstract":"\u0000 In this study, chromium electroplating process, corresponding hydrogen embrittlement, and the effects of baking on hydrogen diffusion are investigated. Three types of materials in the form of Raw 4340 steel, Chromium electroplated 4340 steel, and Chromium electroplated and baked 4340 steel are used in order to shed light on the aforementioned processes. Mechanical and microstructural analyses are carried out to observe the effects of hydrogen diffusion. Mechanical analyses show that the tensile strength and hardness of the specimens deteriorate after the chrome-electroplating process due to the presence of atomic hydrogen. X-ray diffraction (XRD) analyses are carried out for material characterization. Microstructural analyses reveal that hydrogen enters into the material with chromium electroplating process, and baking after chromium electroplating process is an effective way to prevent hydrogen embrittlement. Additionally, the effects of hydrogen on the tensile response of α-Fe-based microstructure with a similar chemical composition of alloying elements are simulated through molecular dynamics (MD) method.","PeriodicalId":15700,"journal":{"name":"Journal of Engineering Materials and Technology-transactions of The Asme","volume":"52 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88518523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jean-Franco̧is Croteau, Guillaume Robin, E. Cantergiani, S. Atieh, N. Jacques, G. Mazars, M. Martiny
{"title":"Characterization of the Formability of High-Purity Polycrystalline Niobium Sheets for SRF Applications","authors":"Jean-Franco̧is Croteau, Guillaume Robin, E. Cantergiani, S. Atieh, N. Jacques, G. Mazars, M. Martiny","doi":"10.1115/1.4052557","DOIUrl":"https://doi.org/10.1115/1.4052557","url":null,"abstract":"\u0000 The forming limit diagram of high-purity niobium sheets used for the manufacturing of superconducting radiofrequency (SRF) cavities is presented. The Marciniak (in-plane) test was used with niobium blanks with a thickness of 1 mm and blank carriers of annealed oxygen-free electronic copper. A high formability was measured, with an approximate true major strain at necking for plane-strain of 0.441. The high formability of high-purity niobium is likely caused by its high strain rate sensitivity of 0.112. Plastic strain anisotropies (r-values) of 1.66, 1.00, and 2.30 were measured in the 0°, 45°, and 90° directions. However, stress–strain curves at a nominal strain rate of ~10−3 s−1 showed similar mechanical properties in the three directions. Theoretical calculations of the forming limit curves (FLCs) were conducted using an analytical two-zone model. The obtained results indicate that the anisotropy and strain rate sensitivity of niobium affect its formability. The model was used to investigate the influence of strain rate on strains at necking. The obtained results suggest that the use of high-speed sheet forming should further increase the formability of niobium.","PeriodicalId":15700,"journal":{"name":"Journal of Engineering Materials and Technology-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":1.2,"publicationDate":"2021-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41485710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Pitts, Wen Jiang, D. Pizzocri, E. Barker, H. Zbib
{"title":"A Continuum Dislocation Dynamics Crystal Plasticity Approach to Irradiated BCC α-Iron","authors":"S. Pitts, Wen Jiang, D. Pizzocri, E. Barker, H. Zbib","doi":"10.1115/1.4052256","DOIUrl":"https://doi.org/10.1115/1.4052256","url":null,"abstract":"","PeriodicalId":15700,"journal":{"name":"Journal of Engineering Materials and Technology-transactions of The Asme","volume":"16 1","pages":"1-36"},"PeriodicalIF":1.2,"publicationDate":"2021-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76623933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Internal State Variable Elastoviscoplasticity-Damage Model for Irradiated Metals","authors":"Heechen Cho, H. Zbib, M. Horstemeyer","doi":"10.1115/1.4052238","DOIUrl":"https://doi.org/10.1115/1.4052238","url":null,"abstract":"","PeriodicalId":15700,"journal":{"name":"Journal of Engineering Materials and Technology-transactions of The Asme","volume":"16 1","pages":"1-44"},"PeriodicalIF":1.2,"publicationDate":"2021-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77848381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Material Mechanics & Hussein Zbib: A Tribute to His Memory","authors":"E. Aifantis","doi":"10.1115/1.4052169","DOIUrl":"https://doi.org/10.1115/1.4052169","url":null,"abstract":"\u0000 A number of new trends in material mechanics and engineering science can be traced back to the PhD work of Hussein Zbib at Michigan Technological University. In particular, the topics of shear bands and plastic instabilities found a new basis and direction, prompting distinguished researchers – of the caliber of Coleman, Batra, Fleck and Hutchinson, Estrin and Kubin, Muhlhaus and Vardoulakis, Tomita and de Borst, Zaiser and Hahner (to mention a few that he interacted with as a graduate student), as well as of Belytschko, Steinmann, Voyiadjis, Polizzotto, and more recently of K. Aifantis/J. Willis and M. Gurtin/L. Anand – to turn their attention to gradient plasticity and make their own monumental contributions in this field. This article first provides a brief account of the initial attempts, I had the joy to share with him, on gradient mechanics theory and its implications to the problems of strain localization and size effects. It then continues with a brief exposition of topics that his “scientific family” has taken up in parallel with him or later on. Finally, it concludes with a sketch of ideas I discussed with him during his post-doctoral period at Michigan Tech (MTU) and his tenure period as a faculty member and Chairman at Washington State (WSU) which, unfortunately, he did not have the time to elaborate upon.","PeriodicalId":15700,"journal":{"name":"Journal of Engineering Materials and Technology-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":1.2,"publicationDate":"2021-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46570745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Anderson, Vignesh Vivekanandan, Peng Lin, K. Starkey, Yash Pachaury, A. El-Azab
{"title":"Situating the Vector Density Approach Among Contemporary Continuum Theories of Dislocation Dynamics","authors":"J. Anderson, Vignesh Vivekanandan, Peng Lin, K. Starkey, Yash Pachaury, A. El-Azab","doi":"10.1115/1.4052066","DOIUrl":"https://doi.org/10.1115/1.4052066","url":null,"abstract":"\u0000 For the past century, dislocations have been understood to be the carriers of plastic deformation in crystalline solids. However, their collective behavior is still poorly understood. Progress in understanding the collective behavior of dislocations has primarily come in one of two modes: the simulation of systems of interacting discrete dislocations and the treatment of density measures of varying complexity that are considered as continuum fields. A summary of contemporary models of continuum dislocation dynamics is presented. These include, in order of complexity, the two-dimensional statistical theory of dislocations, the field dislocation mechanics treating the total Kröner–Nye tensor, vector density approaches that treat geometrically necessary dislocations on each slip system of a crystal, and high-order theories that examine the effect of dislocation curvature and distribution over orientation. Each of theories contain common themes, including statistical closure of the kinetic dislocation transport equations and treatment of dislocation reactions such as junction formation. An emphasis is placed on how these common themes rely on closure relations obtained by analysis of discrete dislocation dynamics experiments. The outlook of these various continuum theories of dislocation motion is then discussed.","PeriodicalId":15700,"journal":{"name":"Journal of Engineering Materials and Technology-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":1.2,"publicationDate":"2021-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46543873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}