{"title":"基于蠕变疲劳预测模型的涡轮叶片疲劳试验与数值研究","authors":"Debin Sun, J. Huo, Shaoxia An","doi":"10.1115/1.4053617","DOIUrl":null,"url":null,"abstract":"\n To scrupulously predict the creep-fatigue life of materials, a creep life prediction model is firstly proposed in this study considering real-time creep damage derived from the Kachanov creep damage model; secondly, combined with the Chaboche fatigue damage model and the nonlinear coupling mechanism of continuous damage mechanics, a creep-fatigue life prediction model of material is ulteriorly presented in this paper; finally, the effectiveness of the creep-fatigue life model is corroborated by experiment data of DZ125, whose prediction results are in the ±2.0 dispersion zone and then the creep-fatigue life of the turbine blade is calculated to compare with the experimental results of the blade specimen to further prove the practicability, whose error is about 3.2%, which can provide a theoretical reference for the damage prediction, durability analysis, and life prediction of the turbine blade.","PeriodicalId":15700,"journal":{"name":"Journal of Engineering Materials and Technology-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and Numerical Study of Turbine Blade Fatigue Based on a Creep-fatigue Prediction Model\",\"authors\":\"Debin Sun, J. Huo, Shaoxia An\",\"doi\":\"10.1115/1.4053617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n To scrupulously predict the creep-fatigue life of materials, a creep life prediction model is firstly proposed in this study considering real-time creep damage derived from the Kachanov creep damage model; secondly, combined with the Chaboche fatigue damage model and the nonlinear coupling mechanism of continuous damage mechanics, a creep-fatigue life prediction model of material is ulteriorly presented in this paper; finally, the effectiveness of the creep-fatigue life model is corroborated by experiment data of DZ125, whose prediction results are in the ±2.0 dispersion zone and then the creep-fatigue life of the turbine blade is calculated to compare with the experimental results of the blade specimen to further prove the practicability, whose error is about 3.2%, which can provide a theoretical reference for the damage prediction, durability analysis, and life prediction of the turbine blade.\",\"PeriodicalId\":15700,\"journal\":{\"name\":\"Journal of Engineering Materials and Technology-transactions of The Asme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Materials and Technology-transactions of The Asme\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4053617\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Materials and Technology-transactions of The Asme","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1115/1.4053617","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Experimental and Numerical Study of Turbine Blade Fatigue Based on a Creep-fatigue Prediction Model
To scrupulously predict the creep-fatigue life of materials, a creep life prediction model is firstly proposed in this study considering real-time creep damage derived from the Kachanov creep damage model; secondly, combined with the Chaboche fatigue damage model and the nonlinear coupling mechanism of continuous damage mechanics, a creep-fatigue life prediction model of material is ulteriorly presented in this paper; finally, the effectiveness of the creep-fatigue life model is corroborated by experiment data of DZ125, whose prediction results are in the ±2.0 dispersion zone and then the creep-fatigue life of the turbine blade is calculated to compare with the experimental results of the blade specimen to further prove the practicability, whose error is about 3.2%, which can provide a theoretical reference for the damage prediction, durability analysis, and life prediction of the turbine blade.