{"title":"Experimental and Numerical Study of Turbine Blade Fatigue Based on a Creep-fatigue Prediction Model","authors":"Debin Sun, J. Huo, Shaoxia An","doi":"10.1115/1.4053617","DOIUrl":null,"url":null,"abstract":"\n To scrupulously predict the creep-fatigue life of materials, a creep life prediction model is firstly proposed in this study considering real-time creep damage derived from the Kachanov creep damage model; secondly, combined with the Chaboche fatigue damage model and the nonlinear coupling mechanism of continuous damage mechanics, a creep-fatigue life prediction model of material is ulteriorly presented in this paper; finally, the effectiveness of the creep-fatigue life model is corroborated by experiment data of DZ125, whose prediction results are in the ±2.0 dispersion zone and then the creep-fatigue life of the turbine blade is calculated to compare with the experimental results of the blade specimen to further prove the practicability, whose error is about 3.2%, which can provide a theoretical reference for the damage prediction, durability analysis, and life prediction of the turbine blade.","PeriodicalId":15700,"journal":{"name":"Journal of Engineering Materials and Technology-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Materials and Technology-transactions of The Asme","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1115/1.4053617","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
To scrupulously predict the creep-fatigue life of materials, a creep life prediction model is firstly proposed in this study considering real-time creep damage derived from the Kachanov creep damage model; secondly, combined with the Chaboche fatigue damage model and the nonlinear coupling mechanism of continuous damage mechanics, a creep-fatigue life prediction model of material is ulteriorly presented in this paper; finally, the effectiveness of the creep-fatigue life model is corroborated by experiment data of DZ125, whose prediction results are in the ±2.0 dispersion zone and then the creep-fatigue life of the turbine blade is calculated to compare with the experimental results of the blade specimen to further prove the practicability, whose error is about 3.2%, which can provide a theoretical reference for the damage prediction, durability analysis, and life prediction of the turbine blade.