Journal of Engineering Materials and Technology-transactions of The Asme最新文献

筛选
英文 中文
Current-Dependent Dynamics of Bidirectional Self-Folding for Multi-Layer Polymers Using Local Resistive Heating 利用局部电阻加热的多层聚合物双向自折叠的电流依赖动力学
IF 1.2 4区 材料科学
Moataz Elsisy, Evan Poska, Moataz Abdulhafez, M. Bedewy
{"title":"Current-Dependent Dynamics of Bidirectional Self-Folding for Multi-Layer Polymers Using Local Resistive Heating","authors":"Moataz Elsisy, Evan Poska, Moataz Abdulhafez, M. Bedewy","doi":"10.1115/1.4049588","DOIUrl":"https://doi.org/10.1115/1.4049588","url":null,"abstract":"\u0000 The purpose of this paper is to characterize the dynamics and direction of self-folding of pre-strained polystyrene (PSPS) and non-pre-strained styrene (NPS), which results from local shrinkage using a new process of directed self-folding of polymer sheets based on a resistively heated ribbon that is in contact with the sheets. A temperature gradient across the thickness of this shape memory polymer (SMP) sheet induces folding along the line of contact with the heating ribbon. Varying the electric current changes the degree of folding and the extent of local material flow. This method can be used to create practical three-dimensional (3D) structures. Sheets of PSPS and NPS were cut to 10 × 20 mm samples, and their folding angles were plotted with respect to time, as obtained from in situ videography. In addition, the use of polyimide tape (Kapton) was investigated for controlling the direction of self-folding. Results show that folding happens on the opposite side of the sample with respect to the tape, regardless of which side the heating ribbon is on, or whether gravity is opposing the folding direction. The results are quantitatively explained using a viscoelastic finite element model capable of describing bidirectional folds arising from the interplay between viscoelastic relaxation and strain mismatch between polystyrene and polyimide. Given the tunability of fold times and the extent of local material flow, resistive-heat-assisted folding is a promising approach for manufacturing complex 3D lightweight structures by origami engineering.","PeriodicalId":15700,"journal":{"name":"Journal of Engineering Materials and Technology-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89928439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Corrosion Behavior of an Anti-Icing Coating on an Aluminum Alloy: An Experimental and Numerical Study 铝合金防冰涂层的腐蚀行为:实验与数值研究
IF 1.2 4区 材料科学
Wei Zhang, S. Lv, Yijing Lv, Xiaosheng Gao, T. Srivatsan
{"title":"Corrosion Behavior of an Anti-Icing Coating on an Aluminum Alloy: An Experimental and Numerical Study","authors":"Wei Zhang, S. Lv, Yijing Lv, Xiaosheng Gao, T. Srivatsan","doi":"10.1115/1.4049589","DOIUrl":"https://doi.org/10.1115/1.4049589","url":null,"abstract":"\u0000 In this paper, a coating–substrate interfacial corrosion test method was developed to simulate and study the failure processes occurring at the coating interface as a direct consequence of environment-induced degradation or corrosion. It was found that the corrosion-induced failure rate of the coating–substrate interface upon exposure to an aggressive corrosive medium was high. Microscopic pits tend to appear at the interface of the coating and the substrate. The permeation channel at the coating interface did cause the corrosive medium, primarily the chloride ions, to gradually diffuse from the sides of the sample to the inner surface of the interface thereby enabling the initiation and continued progression of “local” corrosion. The process for failure due essentially to corrosion of the coating was established, while ensuring to include the infiltration phase, the presence of “local” corrosion phases, expansion, if any, due to corrosion, and eventually culminating in failure. Based on the experimental results, a finite element simulation of the “local” corrosion occurring at the coating interface was executed. The results revealed the microscopic pits at the interface to progressively increase the “local” stress concentration on the surface of the substrate but were found to have little influence on overall stress distribution in the coating. It was also found the shape of the etch pit had an effect on failure expansion under the influence of stress. The numerical method can be used to predict structural failure caused by corrosion pits at the interface of the coating–substrate system in an aggressive environment.","PeriodicalId":15700,"journal":{"name":"Journal of Engineering Materials and Technology-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87419282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical Properties of Additively Manufactured Periodic Cellular Structures and Design Variations 增材制造周期细胞结构的力学性能和设计变化
IF 1.2 4区 材料科学
Derek G. Spear, A. Palazotto, R. Kemnitz
{"title":"Mechanical Properties of Additively Manufactured Periodic Cellular Structures and Design Variations","authors":"Derek G. Spear, A. Palazotto, R. Kemnitz","doi":"10.1115/1.4050939","DOIUrl":"https://doi.org/10.1115/1.4050939","url":null,"abstract":"\u0000 Advances in manufacturing technologies have led to the development of a new approach to material selection, in which architectured designs can be created to achieve a specific mechanical objective. Cellular lattice structures have been at the forefront of this movement due to the ability to tailor their mechanical response through tuning of the topology, surface thickness, cell size, and cell density. In this work, the mechanical properties of additively manufactured periodic cellular lattices are evaluated and compared, primarily through the topology and surface thickness parameters. The evaluated lattices were based upon triply periodic minimal surfaces (TPMS), including novel variations on the base TPMS designs, which have not been tested previously. These lattices were fabricated out of Inconel 718 (IN718) through the selective laser melting (SLM) process. Specimens were tested under uniaxial compression, and the resultant mechanical properties were determined. Further discussion of the fabrication quality and deformation behavior of the lattices is provided. Results of this work indicate that the Diamond TPMS lattice has superior mechanical properties to the other lattices tested. Additionally, with the exception of the primitive TPMS lattice, the base TPMS designs exhibited superior mechanical performance to their derivative lattice designs.","PeriodicalId":15700,"journal":{"name":"Journal of Engineering Materials and Technology-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2021-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83461845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Dynamic Out-of-Plane Compressive Failure Mechanism of Carbon/Carbon Composite: Strain Rate Effect on the Defect Propagation and Microstructure Failure 碳/碳复合材料动态面外压缩破坏机制:应变速率对缺陷扩展和微观组织破坏的影响
IF 1.2 4区 材料科学
G. Fei, Q. Fei, Yanbin Li, N. Gupta
{"title":"Dynamic Out-of-Plane Compressive Failure Mechanism of Carbon/Carbon Composite: Strain Rate Effect on the Defect Propagation and Microstructure Failure","authors":"G. Fei, Q. Fei, Yanbin Li, N. Gupta","doi":"10.1115/1.4050889","DOIUrl":"https://doi.org/10.1115/1.4050889","url":null,"abstract":"Out-of-plane compression experiments with the strain rate from 0.0001/s to 1000/s are performed on a three-dimensional (3D) fine weave-pierced Carbon/Carbon (C/C) composite using a universal testing machine, a high-speed testing machine, and a split Hopkinson pressure bar (SHPB). The compressive failure mechanism of the composite is analyzed by a multi-scale analysis method, which ranges from micro-scale defect propagation, through meso-scale microstructure failure, to macro-scale material failure. In order to predict the out-of-plane compressive properties of 3D fine weave-pierced C/C composite at different strain rates, a strain-rate-dependent compressive constitutive model is proposed. The results show that the out-of-plane compressive behavior of the 3D fine weave-pierced C/C composite is sensitive to strain rate. With increasing the strain rate, the initial compressive modulus, the maximum stress, and the strain at the maximum stress increase. The difference in mechanical behavior between quasi-static and high strain rate compression is owing to the strain rate effect on the defect propagation of the 3D fine weave-pierced C/C composite. The proposed constitutive model matches well with the experimental data.","PeriodicalId":15700,"journal":{"name":"Journal of Engineering Materials and Technology-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2021-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89920484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Study on Experiment and Modeling of Viscoelastic Damper Considering Interfacial Effect of Matrix Rubber/Carbon Black 考虑基体橡胶/炭黑界面效应的粘弹性阻尼器实验与建模研究
IF 1.2 4区 材料科学
Teng Ge, Zhao-dong Xu, F. Yuan
{"title":"Study on Experiment and Modeling of Viscoelastic Damper Considering Interfacial Effect of Matrix Rubber/Carbon Black","authors":"Teng Ge, Zhao-dong Xu, F. Yuan","doi":"10.1115/1.4050848","DOIUrl":"https://doi.org/10.1115/1.4050848","url":null,"abstract":"\u0000 Viscoelastic (VE) dampers are a kind of effective passive vibration control device and widely used to attenuate structural vibration. In this article, experimental study and multiscale modeling analysis on the VE damper for reducing wind-excited vibration are carried out. First, an experimental study on VE damper is conducted to reveal the dynamic properties of VE damper. The experimental results show that the dynamic properties of VE material are influenced by excitation frequency and insignificantly affected by displacement amplitude, and the VE material has good energy dissipation capacity. Second, the damping mechanism of VE damper is analyzed from micro-perspectives by considering the influence of cross-linked and free molecular chain networks. Then, a novel type spherical chain network model based on the chain network microstructure is proposed. The proposed model is verified by comparing the experimental data and the mathematical results, which indicates that the proposed model can accurately describe the dynamic properties of VE damper affected by different temperatures, frequencies, and displacements.","PeriodicalId":15700,"journal":{"name":"Journal of Engineering Materials and Technology-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2021-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91015875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Effect of ZrO2 Nanoparticles and Mechanical Milling on Microstructure and Mechanical Properties of Al–ZrO2 Nanocomposites ZrO2纳米颗粒和机械铣削对Al-ZrO2纳米复合材料微观结构和力学性能的影响
IF 1.2 4区 材料科学
Sinem Aktaş, Ege A Diler
{"title":"Effect of ZrO2 Nanoparticles and Mechanical Milling on Microstructure and Mechanical Properties of Al–ZrO2 Nanocomposites","authors":"Sinem Aktaş, Ege A Diler","doi":"10.1115/1.4050726","DOIUrl":"https://doi.org/10.1115/1.4050726","url":null,"abstract":"\u0000 Nano-aluminum powders and nano-ZrO2 reinforcement particles were mechanically milled and hot-pressed to produce Al–ZrO2 nanocomposites. Microstructure and mechanical properties of Al–ZrO2 nanocomposites were investigated using scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) analyses and by performing hardness and compression testing. Uniform particle distribution was obtained up to 3 wt% of nano-ZrO2 particles using nano-sized aluminum powders as matrix powders and by applying a mechanical milling process. As the nano-ZrO2 reinforcement particles were uniformly distributed in the matrix, the relative density of the Al–ZrO2 nanocomposites increased up to 3 wt% nano-ZrO2 particles with an increase in milling time; on the other hand, the relative density decreased and the porosity increased with high-weight fractions (>3 wt%) of nano-ZrO2 particles due to the negative combined effect of less densification and an increase in the number of particle clusters. The hardness and compressive strength of the Al–ZrO2 nanocomposites improved despite increased porosity. However, the compressive strength of Al–ZrO2 nanocomposites with a high amount (>3 wt%) of nano-ZrO2 particles began to decrease due to the negative combined effect of the less densification of the powder particles and the clustering of nano-ZrO2 reinforcement particles. The brittle-ductile fracture occurred in the Al–ZrO2 nanocomposites.","PeriodicalId":15700,"journal":{"name":"Journal of Engineering Materials and Technology-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82917324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Effect of Precipitates on Plastic Deformation Behavior of High Entropy Alloy Al0.3CoCrFeNi Under High Strain Rate Loading 析出相对高熵合金Al0.3CoCrFeNi高应变率加载塑性变形行为的影响
IF 1.2 4区 材料科学
P. Das, Vishal Kumar, Prasenjit Khanikar
{"title":"Effect of Precipitates on Plastic Deformation Behavior of High Entropy Alloy Al0.3CoCrFeNi Under High Strain Rate Loading","authors":"P. Das, Vishal Kumar, Prasenjit Khanikar","doi":"10.1115/1.4048607","DOIUrl":"https://doi.org/10.1115/1.4048607","url":null,"abstract":"\u0000 High entropy alloys (HEAs) are primarily known for their high strength and high thermal stability. These alloys have recently been studied for high strain rate applications as well. HEAs have been observed to exhibit different properties when subjected to different strain rates. Very few published results on HEAs are available for high strain rate loading conditions. In addition, modeling and simulation work of microstructural details, such as grain boundary and precipitates of HEAs have not yet been investigated. However, at an atomistic length scale, molecular dynamics simulation works of HEAs have already been published. In this study, a detailed microstructural analysis of plastic deformation of the material under high strain rate loading has been performed using dislocation density based crystal plasticity finite element modeling. The primary objective is, therefore, to assess the strengthening effects due to precipitates on a particular high entropy alloy Al0.3CoCrFeNi with ultrafine grains having randomly distributed NiAl precipitates.","PeriodicalId":15700,"journal":{"name":"Journal of Engineering Materials and Technology-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87662583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Elastic Properties and Nonlinear Elasticity of the Noncarbon Hexagonal Lattice Nanomaterials Based on the Multiscale Modeling 基于多尺度建模的非碳六方点阵纳米材料弹性性能及非线性弹性
IF 1.2 4区 材料科学
S. Singh, B. M. R. Raj, K. Mali, G. Watts
{"title":"Elastic Properties and Nonlinear Elasticity of the Noncarbon Hexagonal Lattice Nanomaterials Based on the Multiscale Modeling","authors":"S. Singh, B. M. R. Raj, K. Mali, G. Watts","doi":"10.1115/1.4048874","DOIUrl":"https://doi.org/10.1115/1.4048874","url":null,"abstract":"\u0000 This study presents the elastic properties and nonlinear elasticity of the two-dimensional noncarbon nanomaterials of hexagonal lattice structures having molecular structure XY. Four nitride-based and two phosphide-based two-dimensional nanomaterials, having graphene-like hexagonal lattice structure, are considered in the present study. The four empirical parameters associated with the attractive and repulsive terms of the Tersoff–Brenner potential are calibrated for noncarbon nanomaterials and tested for elastic properties, nonlinear constitutive behavior, bending modulus, bending and torsional energy. The mathematical identities for the tangent constitutive matrix in terms of the interatomic potential function are derived through an atomistic–continuum coupled multiscale framework of the extended version of Cauchy–Born rule. The results obtained using newly calibrated empirical parameters for cohesive energy, bond length, elastic properties, and bending rigidity are compared with those reported in the literature through experimental investigations and quantum mechanical calculations. The continuum approximation is attained through the finite element method. Multiscale evaluations for elastic properties and nonlinear stretching of the nanosheets under in-plane loads are also compared with those obtained from atomistic simulations.","PeriodicalId":15700,"journal":{"name":"Journal of Engineering Materials and Technology-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90235937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
The Effect of Notches on the Failure of Two-Dimensional Nonwoven Fiber Networks 缺口对二维非织造纤维网络失效的影响
IF 1.2 4区 材料科学
Yinglong Chen, T. Siegmund
{"title":"The Effect of Notches on the Failure of Two-Dimensional Nonwoven Fiber Networks","authors":"Yinglong Chen, T. Siegmund","doi":"10.1115/1.4048282","DOIUrl":"https://doi.org/10.1115/1.4048282","url":null,"abstract":"\u0000 The tearing response of sheets of nonwoven fiber material is investigated. It addresses the question on how notch length and notch geometry is related to the tearing strength and tearing processes. The system considered consists of elastic-brittle fibers connected by strong interfiber bonds. Fiber fracture is the only failure mechanism. For a random fiber orientation case, deformation of the unnotched specimen occurs by long-range fiber chains connecting the load inducing boundaries, and failure is by tearing the cross section. The strength of the notched random fiber sheets is well described by a net section criterion, independent of the notch geometry. For a fiber orientation with symmetry relative to the loading direction, tensile loading is transferred by formation of the X-shaped fiber chains centered in the specimen. The subsequent failure occurs along the fiber chain by shear. Thus, the tearing strength is independent of the notch depth in double-edge notched and single-edge notched specimens, when the presence of shallow notch does not disrupt the force chains in the model. As the notch disturbs the fiber chains, alternative shear failure path forms near the notch tip, leading to a dependence of failure strength on the notch geometry. Then, the failure strength of notched nonwoven networks is described by a shear strength and a notch geometry term.","PeriodicalId":15700,"journal":{"name":"Journal of Engineering Materials and Technology-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81089887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Comparison of the Thermo-Fluid Properties of Ti-6Al-4V Melt Pools Formed by Laser and Electron-Beam Powder-Bed Fusion Processes 激光与电子束粉末床熔合形成Ti-6Al-4V熔池的热流体特性比较
IF 1.2 4区 材料科学
M. S. Rahman, P. Schilling, P. Herrington, U. Chakravarty
{"title":"A Comparison of the Thermo-Fluid Properties of Ti-6Al-4V Melt Pools Formed by Laser and Electron-Beam Powder-Bed Fusion Processes","authors":"M. S. Rahman, P. Schilling, P. Herrington, U. Chakravarty","doi":"10.1115/1.4048371","DOIUrl":"https://doi.org/10.1115/1.4048371","url":null,"abstract":"\u0000 Powder-bed fusion (PBF) process is a subdivision of additive manufacturing (AM) technology where a heat source at a controlled speed selectively fuses regions of a powder-bed material to form three-dimensional (3D) parts in a layer-by-layer fashion. Two of the most commercialized and powerful PBF methods for fabricating full-density metallic parts are the laser PBF (L-PBF) and electron beam PBF (E-PBF) processes. In this study, a multiphysics-based 3D numerical model is developed to compare the thermo-fluid properties of Ti-6Al-4V melt pools formed by the L-PBF and E-PBF processes. The temperature-dependent properties of Ti-6Al-4V alloy and the parameters for the laser and electron beams are incorporated in the model as the user-defined functions (UDFs). The melt-pool geometry and its thermo-fluid behavior are investigated using the finite volume (FV) method, and results for the variations of temperature, thermo-physical properties, velocity, geometry of the melt pool, and cooling rate in the two processes are compared under similar irradiation conditions. For an irradiance level of 26 J/mm3 and a beam interaction time of 1.212 ms, simulation results show that the L-PBF process gives a faster cooling rate (1. 5 K/μs) than that in the E-PBF process (0.74 K/μs). The magnitude of liquid velocity in the melt pool is also higher in L-PBF than that in E-PBF. The numerical model is validated by comparing the simulation results for the melt-pool geometry with the PBF experimental results and comparing the numerical melt-front position with the analytical solution for the classical Stephan problem of melting of a phase-change material (PCM).","PeriodicalId":15700,"journal":{"name":"Journal of Engineering Materials and Technology-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73463135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信