{"title":"Preparation, in vitro and in vivo evaluation of phloretin-loaded TPGS/Pluronic F68 modified mixed micelles with enhanced bioavailability and anti-aging activity.","authors":"Jiaying Li, Tingyuan Li, Mingjie Gong, Xiaowen Wang, Qinyang Hua, Xia Jiang, Qilong Wang, Elmurat Toreniyazov, Jiangnan Yu, Xia Cao, Michael Adu-Frimpong, Ximing Xu","doi":"10.1080/1061186X.2025.2469753","DOIUrl":"https://doi.org/10.1080/1061186X.2025.2469753","url":null,"abstract":"<p><p>Phloretin exhibits strong antioxidant and anti-aging properties by inhibiting mitochondrial oxidation of glutamate, succinic acid, and ascorbic acid. However, its clinical application is limited by poor aqueous solubility and low oral bioavailability. To enhance its bioavailability and efficacy, we incorporated phloretin into nano-micelles (phloretin-MM) using the thin film dispersion method. Characterization revealed that the optimal formulation had TPGS and Pluronic F68 in a 4:1 ratio as the excipients, which resulted in spherical micelles with an average particle size of 33.28 nm and an encapsulation efficiency of 71.2 ± 0.48%. The in vitro release profile showed that the phloretin-MM showed significantly higher cumulative release rates than free phloretin across various pH conditions, while the pharmaceutical analysis in rats indicated that phloretin-MM significantly improved the oral bioavailability of phloretin (about 5 folds) in circulation. Additionally, through the analysis of the staining of zebrafish under light microscopy and the average gray value, it can be concluded that phloretin has anti-aging drug effect, and phloretin-MM is better than free phloretin. These findings suggest that TPGS/Pluronic F68-modified phloretin-MM could serve as an excellent nano-drug carrier system, potentially enhancing the solubility, bioavailability, and anti-aging effects of phloretin for broader clinical applications.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"1-45"},"PeriodicalIF":4.3,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143483331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparison of the accumulation manner of a macromolecular drug between two mouse tumour models: study with magnetic resonance imaging and the model macromolecular drug, gadolinium-conjugated dextran.","authors":"Keizo Takeshita, Yohei Nakagawa, Eika Yokoyama, Nana Shinohara, Kayoko Miura, Shiho Naka, Masashi Nishida, Keiji Yasukawa, Yuhei Ohta, Jun Fang, Shoko Okazaki","doi":"10.1080/1061186X.2024.2409886","DOIUrl":"10.1080/1061186X.2024.2409886","url":null,"abstract":"<p><p>A knowledge of the difference of spatio-temporal behaviour of nanomedicine in different type of tumour models is important to develop well-targeted nanomedicine for tumour. In this study, intratumoral accumulation of the model nanomedicine, gadolinium-conjugated dextran (Gd-Dex), was examined with magnetic resonance imaging in two tumour models; mouse sarcoma S180 and radiation-induced mouse fibrosarcoma RIF-1. From time-course of the distribution images, the plasma-to-tumour interstitial tissue transfer constant (<i>K<sup>trans</sup></i>) and fractional plasma volume (<i>V<sub>p</sub></i>) were calculated and mapped. Gd-Dex preferentially distributed to the marginal region of S180 tumours immediately after its injection, and then started to accumulate in some parts of the central region. <i>K<sup>trans</sup></i> and <i>V<sub>p</sub></i> values were large in the marginal region, while only <i>K<sup>trans</sup></i> was large in some parts of the central region. In contrast, the distribution of Gd-Dex in RIF-1 tumours was fairly homogeneous, and may have resulted from the homogeneous distributions of <i>K<sup>trans</sup></i> and <i>V<sub>p</sub></i>. The amounts of Gd-Dex that accumulated in entire tumours in both tumour models correlated with the volume of tumours; however, accumulation in large S180 tumours deviated from the correlation in the early phase. The differences in the manner and pharmacokinetics of nanomedicine among tumour models may affect the accumulation of the medicine.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"268-280"},"PeriodicalIF":4.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Brain targeted polymeric micelles as drug carriers for ischaemic stroke treatment.","authors":"Zirui Zhao, Huijia Song, Mengge Qi, Yurong Liu, Yanchao Zhang, Shuo Li, Huimin Zhang, Yongjun Sun, Yanping Sun, Zibin Gao","doi":"10.1080/1061186X.2024.2417190","DOIUrl":"10.1080/1061186X.2024.2417190","url":null,"abstract":"<p><p>Ischaemic stroke is a central nervous system disease with high morbidity, recurrence and mortality rates. Thrombolytic and neuroprotective therapies are the main therapeutic strategies for ischaemic stroke, however, the poor delivery efficiency of thrombolytic and neuroprotective drugs to the brain limits their clinical application. So far, the development of nanomedicine has brought opportunities for the above challenges, which can not only realise the effective accumulation of drugs in the target site, but also improve the pharmacokinetic behaviour of the drugs. Among the most rapidly developing nanoparticles, micelles gradually emerging as an effective strategy for ischaemic stroke treatment due to their own unique advantages. This review provided an overview of targeted and response-release micelles based on the physicochemical properties of the ischaemic stroke microenvironment, summarised the targeting strategies for delivering micellar formulations to the thrombus, blood-brain barrier, and brain parenchyma, and finally described the potentials and challenges of polymeric micelles in the treatment of ischaemic stroke.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"232-248"},"PeriodicalIF":4.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142467063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of Drug TargetingPub Date : 2025-02-01Epub Date: 2024-11-05DOI: 10.1080/1061186X.2024.2416247
Kirti Nain, Kritika Sonar, Sibasis Sahoo, Jagdish C Gupta, Sonam Grover, Arockiasamy Arulandu, G P Talwar
{"title":"Humanized recombinant immunotoxin targeting hCG demonstrates therapeutic potential for advanced stage difficult to treat cancers.","authors":"Kirti Nain, Kritika Sonar, Sibasis Sahoo, Jagdish C Gupta, Sonam Grover, Arockiasamy Arulandu, G P Talwar","doi":"10.1080/1061186X.2024.2416247","DOIUrl":"10.1080/1061186X.2024.2416247","url":null,"abstract":"<p><p>We report the development of an immunotherapeutic molecule, a <i>Humanized</i> immunotoxin, for treating hCG-expressing advanced-stage cancers. PiPP, a high-affinity anti-hCG monoclonal antibody, is used in the immunotoxin for 'homing' hCG-positive cancer cells. The deimmunized (DI) form of α-Sarcin, a fungal-origin toxin that lacks functional T-cell epitopes, is used in the design to ensure minimal immunogenicity of the immunotoxin for repetitive use in humans. A single-chain variable fragment (scFv) of PiPP was constructed by linking the Humanized VH and VL regions of the antibody. The scFv part of the antibody was further linked to the toxin α-Sarcin (DI) at the gene level and expressed as a recombinant protein in <i>E. coli</i>. The immunotoxin was purified from the bacterial cell lysate and analysed for binding and cytotoxicity to hCG-secreting colorectal and pancreatic cancer cells. The results showed that the scFv(PiPP)-Sarcin immunotoxin was able to bind to colorectal and pancreatic cancer cells and killed approximately 85% of the cells. <i>In vivo</i> testing of the immunotoxin produced results similar to those of <i>in vitro</i> testing against colorectal adenocarcinoma-induced tumours. This immunotoxin could be a promising immunotherapeutic agent for treating colorectal, pancreatic and other terminal-stage hCG-expressing cancers.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"281-294"},"PeriodicalIF":4.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142467065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of Drug TargetingPub Date : 2025-02-01Epub Date: 2024-10-17DOI: 10.1080/1061186X.2024.2416241
Muhammad Waqas Choudry, Rabia Riaz, Muhammad Hassan Raza, Pashma Nawaz, Bilal Ahmad, Neelam Jahan, Shazia Rafique, Samia Afzal, Iram Amin, Muhammad Shahid
{"title":"Development of non-viral targeted RNA delivery vehicles - a key factor in success of therapeutic RNA.","authors":"Muhammad Waqas Choudry, Rabia Riaz, Muhammad Hassan Raza, Pashma Nawaz, Bilal Ahmad, Neelam Jahan, Shazia Rafique, Samia Afzal, Iram Amin, Muhammad Shahid","doi":"10.1080/1061186X.2024.2416241","DOIUrl":"10.1080/1061186X.2024.2416241","url":null,"abstract":"<p><p>Decade-long efforts in medicinal biotechnology have enabled large-scale in-vitro production of optimised therapeutic RNA constructs for stable in-vivo delivery and modify the expression of disease-related genes. The success of lipid nanoparticle-formulated mRNA vaccines against Severe acute respiratory syndrome Coronavirus-2 (SARS-Cov2) has opened a new era of RNA therapeutics and non-viral drug delivery systems. The major limiting factor in the clinical translation of RNA-based drugs is the availability of suitable delivery vehicles that can protect RNA payloads from degradation, offer controlled release, and pose minimal inherent toxicity. Unwanted immune response, payload size constraints, genome integration, and non-specific tissue targeting limit the application of conventional viral drug-delivery vehicles. This review summarises current research on nano-sized drug carriers, including lipid nanoparticles, polymer-based formulations, cationic nanoemulsion, and cell-penetrating peptides, for targeted therapeutic RNA delivery. Further, this paper highlights the biomimetic approaches (i.e. mimicking naturally occurring bio-compositions, molecular designs, and systems), including virus-like particles (VLPs), exosomes, and selective endogenous eNcapsidation (SEND) technology being explored as safer and more efficient alternatives.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"171-184"},"PeriodicalIF":4.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142400453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of Drug TargetingPub Date : 2025-02-01Epub Date: 2024-10-11DOI: 10.1080/1061186X.2024.2412142
Muhammad Ahsan Waqar
{"title":"A comprehensive review on recent advancements in drug delivery via selenium nanoparticles.","authors":"Muhammad Ahsan Waqar","doi":"10.1080/1061186X.2024.2412142","DOIUrl":"10.1080/1061186X.2024.2412142","url":null,"abstract":"<p><p>Nanotechnology has significantly impacted drug discovery and development over the past three decades, offering novel insights and expanded treatment options. Key to this field is nanoparticles, ranging from 1 to 100 nanometres, with unique properties distinct from larger materials. Selenium nanoparticles (SeNPs) are particularly promising due to their low toxicity and selective cytotoxicity against cancer cells. They have shown efficacy in reducing various cancers types and mitigating conditions like diabetic nephropathy and neurological disorders, such as Alzheimer's disease. This review highlights SeNPs' role in enhancing drug delivery systems, improving the absorption of water-soluble compounds, proteins, peptides, vaccines, and other biological therapies. By modifying nanoparticle surfaces with targeting ligands, drug delivery can achieve precise site-specific delivery, increasing effectiveness. SeNPs can be synthesised through physical, chemical, and biological methods, each offering advantages in stability, size, and application potential. Additionally, SeNPs enhance immune responses and reduce oxidative stress, validating their role in biotherapy and nanomedicine. Their ability to target macrophages and regulate polarisation underscores their potential in antimicrobial therapies. Recent advancements, such as mannosylated SeNPs for targeted delivery, exemplify innovative nanotechnology applications in medicine. Overall, SeNPs represent a promising frontier in nanomedicine, offering new avenues for treating and managing various diseases.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"157-170"},"PeriodicalIF":4.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142400452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of Drug TargetingPub Date : 2025-02-01Epub Date: 2024-10-21DOI: 10.1080/1061186X.2024.2417012
Nishabh Kushwaha, Drishti Panjwani, Shruti Patel, Priyanka Ahlawat, Mange Ram Yadav, Asha S Patel
{"title":"Emerging advances in nano-biomaterial assisted amyloid beta chimeric antigen receptor macrophages (CAR-M) therapy: reducing plaque burden in Alzheimer's disease.","authors":"Nishabh Kushwaha, Drishti Panjwani, Shruti Patel, Priyanka Ahlawat, Mange Ram Yadav, Asha S Patel","doi":"10.1080/1061186X.2024.2417012","DOIUrl":"10.1080/1061186X.2024.2417012","url":null,"abstract":"<p><p>Alzheimer's disease is the most common form, accounting for 60-70% of 55 million dementia cases. Even though the precise pathophysiology of AD is not completely understood, clinical trials focused on antibodies targeting aggregated forms of β amyloid (Aβ) have demonstrated that reducing amyloid plaques can arrest cognitive decline in patients in the early stages of AD. In this study, we provide an overview of current research and innovations for controlled release from nano-biomaterial-assisted chimeric antigen receptor macrophage (CAR-M) therapeutic strategies targeted at AD. Nano-bio materials, such as iron-oxide nanoparticles (IONPs), can be made selectively (Hp-Hb/mannose) to bind and take up Aβ plaques like CAR-M cells. By using nano-bio materials, both the delivery and stability of CAR-M cells in brain tissue can be improved to overcome the barriers of the BBB and enhance therapeutic effects. By enhancing the targeting capabilities and stability of CAR-M cells, mRNA-loaded nano-biomaterials can significantly improve the efficacy of immunotherapy for plaque reduction in AD. This novel strategy holds promise for translating preclinical successes into clinical applications, potentially revolutionising the management of AD.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"185-205"},"PeriodicalIF":4.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142467064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Methotrexate-Loaded solid lipid nanoparticles enhance the viability of cutaneous flaps: potential for surgical wound healing.","authors":"Cristina Pires Camargo, Maria Carolina Guido, Elaine Rufo Tavares, Priscila Oliveira Carvalho, Rolf Gemperli, Raul Cavalcante Maranhão","doi":"10.1080/1061186X.2024.2409884","DOIUrl":"10.1080/1061186X.2024.2409884","url":null,"abstract":"<p><p>Skin flaps are employed to cover cutaneous denuded surfaces, but ensuing flap necrosis often occurs. Previously, rats with myocardial infarction treated with lipid-core nanoparticles (LDE) loaded with methotrexate (MTX) improved myocardial irrigation and reduced necrosis. Here, the aim was to investigate the efficacy of LDE-MTX to preserve the viability of cutaneous flaps and its implications for surgical wound healing. Twenty-eight male rats were divided into 4 groups: (1) LDE, injected intraperitoneally with LDE only; (2) MTX (1 mg/Kg commercial MTX): (3) LDE-MTX (1 mg/Kg MTX associated with LDE), and controls without treatment. LDE, MTX or LDE-MTX were repeated after 2 days. Then, flap surgery (9x3cm) was performed on the dorsal region. Injections were continued every other day until day 7 when animals were euthanized. LDE-MTX treatment improved the total viable area of the flaps with a fourfold increase in blood flow and reduced inflammatory cell number (<i>p</i> < 0.001), accompanied by decreased protein expression of pro-inflammatory factors. SOD-1 was higher in LDE-MTX-treated rats (<i>p</i> < 0.05). In conclusion, LDE-MTX treatment achieved total viability of cutaneous flaps, with increased irrigation and diminished local inflammation. LDE-MTX may offer efficient and cost-effective prevention of cutaneous flaps and treatment for wounds from surgical procedures to be tested in future clinical studies.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"259-267"},"PeriodicalIF":4.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of Drug TargetingPub Date : 2025-02-01Epub Date: 2024-10-04DOI: 10.1080/1061186X.2024.2409881
Thomas Toshio Inoue, Vinicius Viana Pereira, Grasiely Faria de Sousa, Lays Fernanda Nunes Dourado, Armando da Silva Cunha-Junior
{"title":"Anti-angiogenic activity of polymeric nanoparticles loaded with ursolic acid.","authors":"Thomas Toshio Inoue, Vinicius Viana Pereira, Grasiely Faria de Sousa, Lays Fernanda Nunes Dourado, Armando da Silva Cunha-Junior","doi":"10.1080/1061186X.2024.2409881","DOIUrl":"10.1080/1061186X.2024.2409881","url":null,"abstract":"<p><p>Ursolic acid (UA) is an abundant natural product and has shown great promise for treating diseases related to the appearance of new blood vessels. However, its clinical use is limited due to its low solubility in aqueous media, resulting in reduced bioavailability. The present study aimed to synthetize poly(lactic-co-glycolic acid) nanoparticles loaded with UA by nanoprecipitation method and to evaluate the toxicity and anti-angiogenic activity using the <i>in vivo</i> chorioallantoic model. The nanoparticles were obtained in the size range that varied from 103.0 to 169.3 nm, they presented a uniform distribution (polydispersity index <0.2), and a negatively charged surface, with an encapsulation efficiency close to 50%. The release profile of the developed nanoformulation showed an initial burst in the first 2 h and demonstrated no acute toxicity (irritation index <0.9). Moreover, the chorioallantoic assay showed a significant reduction in both geometrical and topological parameters compared to saline control (<i>p</i> < .05). In conclusion, the study revealed a quick and simple way to obtain poly(lactic-co-glycolic) acid nanoparticles, a drug delivery system to UA, which showed potential antiangiogenic action and can be used to treat diseases involving neovascularisation.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"249-258"},"PeriodicalIF":4.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A review on endoplasmic reticulum-dependent anti-breast cancer activity of herbal drugs: possible challenges and opportunities.","authors":"Mayank Kumar Choudhary, Bhaskaranand Pancholi, Manoj Kumar, Raja Babu, Debapriya Garabadu","doi":"10.1080/1061186X.2024.2417189","DOIUrl":"10.1080/1061186X.2024.2417189","url":null,"abstract":"<p><p>Breast cancer (BC) is a major cause of cancer-related mortality across the globe and is especially highly prevalent in females. Based on the poor outcomes and several limitations of present management approaches in BC, there is an urgent need to focus and explore an alternate target and possible drug candidates against the target in the management of BC. The accumulation of misfolded proteins and subsequent activation of unfolded protein response (UPR) alters the homeostasis of endoplasmic reticulum (ER) lumen that ultimately causes oxidative stress in ER. The UPR activates stress-detecting proteins such as IRE1α, PERK, and ATF6, these proteins sometimes may lead to the activation of pro-apoptotic signaling pathways in cancerous cells. The ER stress-dependent antitumor activity could be achieved either through suppressing the adaptive UPR to make cells susceptible to ER stress or by causing chronic ER stress that may lead to triggering of pro-apoptotic signaling pathways. Several herbal drugs trigger ER-dependent apoptosis in BC cells. Therefore, this review discussed the role of fifty-two herbal drugs and their active constituents, focusing on disrupting the balance of the ER within cancer cells. Further, several challenges and opportunities have also been discussed in ER-dependent management in BC.Breast cancer (BC) is a major cause of cancer-related mortality across the globe and is especially highly prevalent in females. Based on the poor outcomes and several limitations of present management approaches in BC, there is an urgent need to focus and explore an alternate target and possible drug candidates against the target in the management of BC. The accumulation of misfolded proteins and subsequent activation of unfolded protein response (UPR) alters the homeostasis of endoplasmic reticulum (ER) lumen that ultimately causes oxidative stress in ER. The UPR activates stress-detecting proteins such as IRE1α, PERK, and ATF6, these proteins sometimes may lead to the activation of pro-apoptotic signaling pathways in cancerous cells. The ER stress-dependent antitumor activity could be achieved either through suppressing the adaptive UPR to make cells susceptible to ER stress or by causing chronic ER stress that may lead to triggering of pro-apoptotic signaling pathways. Several herbal drugs trigger ER-dependent apoptosis in BC cells. Therefore, this review discussed the role of fifty-two herbal drugs and their active constituents, focusing on disrupting the balance of the ER within cancer cells. Further, several challenges and opportunities have also been discussed in ER-dependent management in BC.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"206-231"},"PeriodicalIF":4.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142467062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}