Methodological advances in liposomal encapsulation efficiency determination: systematic review and analysis.

IF 4.3 4区 医学 Q1 PHARMACOLOGY & PHARMACY
Jin-Ping Wang, Zi-Rui Huang, Cheng Zhang, Yi-Ran Ni, Bo-Tao Li, Ying Wang, Jiang-Feng Wu
{"title":"Methodological advances in liposomal encapsulation efficiency determination: systematic review and analysis.","authors":"Jin-Ping Wang, Zi-Rui Huang, Cheng Zhang, Yi-Ran Ni, Bo-Tao Li, Ying Wang, Jiang-Feng Wu","doi":"10.1080/1061186X.2025.2484773","DOIUrl":null,"url":null,"abstract":"<p><p>Liposomes represent a highly promising drug delivery platform for a wide range of pharmaceutical compounds. Encapsulation efficiency (EE) stands as a critical quality attribute for liposomal formulations. Accurate determination of EE requires quantification of at least two parameters among the three distinct drug populations: total drug content, encapsulated drug fraction, and free drug concentration. However, due to the complex physicochemical characteristics of liposomes, particularly their structural flexibility, surface charge properties, and organic phase composition, direct measurement of encapsulated and free drug fractions presents significant analytical challenges. The ability to precisely quantify both free and total drug concentrations in liposomal formulations enables rapid and reliable evaluation of encapsulation efficiency, which is essential for guiding formulation optimisation and ensuring consistent product quality during scale-up manufacturing processes. This review provides a comprehensive analysis of various analytical techniques for EE determination, including (reverse) dialysis, ultrafiltration centrifugation, differential centrifugation (ultra/low-speed), and size exclusion chromatography, with particular emphasis on their methodological characteristics, applicable ranges, advantages, and limitations. Furthermore, we propose appropriate detection strategies for encapsulation efficiency assessment based on specific laboratory capabilities and the physicochemical properties of the investigational compounds.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"1-10"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Drug Targeting","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/1061186X.2025.2484773","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Liposomes represent a highly promising drug delivery platform for a wide range of pharmaceutical compounds. Encapsulation efficiency (EE) stands as a critical quality attribute for liposomal formulations. Accurate determination of EE requires quantification of at least two parameters among the three distinct drug populations: total drug content, encapsulated drug fraction, and free drug concentration. However, due to the complex physicochemical characteristics of liposomes, particularly their structural flexibility, surface charge properties, and organic phase composition, direct measurement of encapsulated and free drug fractions presents significant analytical challenges. The ability to precisely quantify both free and total drug concentrations in liposomal formulations enables rapid and reliable evaluation of encapsulation efficiency, which is essential for guiding formulation optimisation and ensuring consistent product quality during scale-up manufacturing processes. This review provides a comprehensive analysis of various analytical techniques for EE determination, including (reverse) dialysis, ultrafiltration centrifugation, differential centrifugation (ultra/low-speed), and size exclusion chromatography, with particular emphasis on their methodological characteristics, applicable ranges, advantages, and limitations. Furthermore, we propose appropriate detection strategies for encapsulation efficiency assessment based on specific laboratory capabilities and the physicochemical properties of the investigational compounds.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
165
审稿时长
2 months
期刊介绍: Journal of Drug Targeting publishes papers and reviews on all aspects of drug delivery and targeting for molecular and macromolecular drugs including the design and characterization of carrier systems (whether colloidal, protein or polymeric) for both vitro and/or in vivo applications of these drugs. Papers are not restricted to drugs delivered by way of a carrier, but also include studies on molecular and macromolecular drugs that are designed to target specific cellular or extra-cellular molecules. As such the journal publishes results on the activity, delivery and targeting of therapeutic peptides/proteins and nucleic acids including genes/plasmid DNA, gene silencing nucleic acids (e.g. small interfering (si)RNA, antisense oligonucleotides, ribozymes, DNAzymes), as well as aptamers, mononucleotides and monoclonal antibodies and their conjugates. The diagnostic application of targeting technologies as well as targeted delivery of diagnostic and imaging agents also fall within the scope of the journal. In addition, papers are sought on self-regulating systems, systems responsive to their environment and to external stimuli and those that can produce programmed, pulsed and otherwise complex delivery patterns.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信