Vimbainashe L. Dzimbanhete , Lena Alakangas , Torbjörn Karlsson , Elsa Peinerud , Oscar Paulsson , Olof Martinsson , Thomas Aiglsperger
{"title":"Uranium dynamics at an iron ore mine site in Northern Sweden: Sources and mobility along the mine value chain","authors":"Vimbainashe L. Dzimbanhete , Lena Alakangas , Torbjörn Karlsson , Elsa Peinerud , Oscar Paulsson , Olof Martinsson , Thomas Aiglsperger","doi":"10.1016/j.jconhyd.2025.104530","DOIUrl":"10.1016/j.jconhyd.2025.104530","url":null,"abstract":"<div><div>Uranium (U) release from mining has been typically associated with former U mine sites, but trace U levels in iron or base metal ores can also lead to U mobilization into ground and surface water posing potential risks due to U's chemical toxicity and radioactivity. This study investigates U sources and mobility at an iron ore mine site in Northern Sweden, where U concentrations (median 1.8 μg/l) exceeding the Swedish annual guideline value of 0.17 μg/l have been detected in a river receiving excess process water from the mine site. Drill core samples were characterized to identify the minerals hosting U in the iron ore and sequential extraction tests were conducted on solid samples from the processing plant to assess U mobility potential. Results indicate that, given its low U content, iron ore is not a significant source of the elevated U levels detected in the process water. Thorite, the main U-bearing mineral remains stable under the neutral to alkaline pH conditions in the processing plant. U speciation calculations on process water monitoring data, performed in PHREEQC with the PRODATA thermodynamic database, revealed dominant calcium uranyl carbonate complexes, specifically Ca<sub>2</sub>UO<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub> and CaUO<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub><sup>2−</sup>. Mine water from Leveäniemi and Gruvberget open pits, particularly Leveäniemi, was identified as the main source of U to the process water in the recirculation system. The U in mine water originates from groundwater infiltration into the open pits and leaching of U from the open pit wall rocks. Further investigation of these sources and U's geochemical behavior in mine water before it mixes with process water in the processing plant is crucial for understanding the processes driving elevated downstream U concentrations.</div></div>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":"270 ","pages":"Article 104530"},"PeriodicalIF":3.5,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143552657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xuyang Chen , Meng Yao , Liming Ren , Wei Du , Linchao Hu , Bowen Li , Mingxin Wang
{"title":"Formation mechanisms of hydraulic circulation and its effects on the nitrobenzene migration in homogeneous aquifers with different medium sizes during air sparging remediation","authors":"Xuyang Chen , Meng Yao , Liming Ren , Wei Du , Linchao Hu , Bowen Li , Mingxin Wang","doi":"10.1016/j.jconhyd.2025.104529","DOIUrl":"10.1016/j.jconhyd.2025.104529","url":null,"abstract":"<div><div>Porewater flow is known to introduce uncertainty in the effectiveness and extent of remediation in aquifers during air sparging (AS). In this study, the hydraulic circulation migration behavior, influencing factors, and its effects on nitrobenzene transport in AS process were investigated using light transmission visualization technology. Experimental results showed that when the air injection rate (Q) exceeded a critical threshold (Qc), porewater flow induced hydraulic circulation in homogeneous aquifers with different medium sizes. The values of Qc were found to be approximately 300 L/h for medium sand, 100 L/h for coarse sand, and 0.5 L/h for gravel aquifers. It was observed that the flow velocity of hydraulic circulation was linearly positively correlated with Q, while the zone of influence (ZOI) area was logarithmically correlated with Q. In aquifers with coarse sand, continuous channelized flow was seen to impede contaminant migration from the left to the right hydraulic circulation zone. In contrast, in gravel aquifers, discontinuous bubbly flow allowed contaminants to migrate between zones, which increased the risk of expanding the contaminant plume's range. Moreover, in aquifers with medium and coarse sand, hydraulic circulation was mainly caused by the chimney effect, whereas in gravel aquifers, oscillating bubble effects were notably observed. This observation explained why the hydraulic circulation effect in gravel aquifers was superior compared to that in medium and coarse sand aquifers. These findings are expected to contribute to expanding the remediation mechanisms, achieving precise remediation, and improving contaminant removal in AS technology.</div></div>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":"270 ","pages":"Article 104529"},"PeriodicalIF":3.5,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143552655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aiping Jiang , Dongsheng Wang , Zhen Ning , Peng Li , Tao Xu , Boran Zhu , Qidong Peng , Tiantian Jin , Junqiang Lin , Di Zhang
{"title":"Spatio-temporal characteristics and influencing factors of water quality in Xiangxi Bay under the operation of the three gorges reservoir","authors":"Aiping Jiang , Dongsheng Wang , Zhen Ning , Peng Li , Tao Xu , Boran Zhu , Qidong Peng , Tiantian Jin , Junqiang Lin , Di Zhang","doi":"10.1016/j.jconhyd.2025.104518","DOIUrl":"10.1016/j.jconhyd.2025.104518","url":null,"abstract":"<div><div>As the largest hydropower project in the world, the Three Gorges Reservoir (TGR) exerts significant backwater effects, leading to various water quality issues. The Xiangxi River, the largest tributary near the dam, has experienced algal bloom phenomena for several years. However, the characteristics and influencing factors of water quality during different operational periods of the reservoir remain unclear. This study analyzes 12 physical and chemical parameters of the Xiangxi Bay (XXB) from 2019 to 2023, employing a data-driven approach to explore the temporal and spatial characteristics of water quality under varying operational conditions of the TGR. It discusses the influencing factors and proposes countermeasures to address water quality challenges. The results indicate that: (1) Water quality parameters in XXB exhibit significant spatial and temporal variability, peaking in summer, with higher values observed in the middle and upper reaches. The Water Quality Index (WQI) indicates overall good water quality, while the Trophic Level Index (TLI) suggests medium eutrophication, particularly evident in spring and summer. (2) The backwater effects of the TGR have altered hydrodynamic conditions and mixing processes in XXB, significantly impacting water quality and promoting eutrophication. (3) Water quality is influenced by nutrient, organic matter, algae, and temperature, especially during low water levels in summer, with the middle and upper reaches being most affected. Key factors driving algal growth during this period include Total Nitrogen (TN), Transparency (SD), and Water Temperature (WT). (4) Effective control of eutrophication and algal blooms in XXB should focus on long-term upstream source management, close monitoring and prediction during spring and summer, and ecological operation of reservoir. This study enhances our understanding of the temporal and spatial characteristics of water quality in XXB under the operational dynamics of the TGR, providing guidance for eutrophication management and bloom prevention.</div></div>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":"270 ","pages":"Article 104518"},"PeriodicalIF":3.5,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143437746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Faris M. Hamdi , Ali Altaee , Yahia Aedan , John Zhou , Syed Javaid Zaidi , Lilyan Alsaka , Raed Almalki , Abdulmajeed Al-Askar , Akshaya K. Samal
{"title":"Black tea waste/iron slag reactive filter media-electrokinetic for mixed heavy metals treatment from contaminated site","authors":"Faris M. Hamdi , Ali Altaee , Yahia Aedan , John Zhou , Syed Javaid Zaidi , Lilyan Alsaka , Raed Almalki , Abdulmajeed Al-Askar , Akshaya K. Samal","doi":"10.1016/j.jconhyd.2025.104517","DOIUrl":"10.1016/j.jconhyd.2025.104517","url":null,"abstract":"<div><div>Electrokinetic (EK) remediation is a cutting-edge technique used for extracting heavy metals from soils by applying an electric field. This study explores the integration of EK remediation with reactive filtration media (RFM) composed of recycled waste materials of powder iron slag/black tea waste (PIS/BTW) and granular iron slag/black tea waste (GIS/BTW) to improve the removal efficiency of single and mixed heavy metals from kaolinite and natural soils. Results demonstrated that PIS/BTW significantly outperformed GIS/BTW in heavy metal extraction, achieving 98.75 % copper removal compared to 90.06 % with GIS/BTW. Recycled RFMs achieved excellent copper removal, reaching 91.28 % for PIS/BTW and 84.90 % for GIS/BTW over 3 weeks. Specific energy consumption (SEC) increased with treatment durations, ranging from 0.055 to 0.254 kWh kg<sup>−1</sup> in kaolin soil, while 0.344 kWh kg<sup>−1</sup> increased in natural soil. For a heavy metals mixture in kaolinite soil, the removal of copper, nickel, and zinc achieved 97.15 %, 98.30 %, and 96.68 %, respectively, after 4 weeks, while in natural soil, the removal rates for copper, nickel, and zinc were 16.39 %, 89.22 %, and 84.38 % after 5 weeks. The alkaline pH of the RFMs facilitated the adsorption and precipitation of metal ions, contributing to their immobilization. The research study demonstrated the effectiveness of using recyclable and eco-friendly RFMs to optimize EK remediation, providing a sustainable and efficient solution for addressing heavy metal contamination in soils.</div></div>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":"270 ","pages":"Article 104517"},"PeriodicalIF":3.5,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143437744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alice Zupo , Rodrigo S. de Paula , Jarbas L.D. Sampaio , Jorge G.R. Júnior , Marília C. Melo
{"title":"Comparative study of standard and modified groundwater vulnerability methods in the gold and iron mining regions of Western Quadrilátero Ferrífero, Brazil","authors":"Alice Zupo , Rodrigo S. de Paula , Jarbas L.D. Sampaio , Jorge G.R. Júnior , Marília C. Melo","doi":"10.1016/j.jconhyd.2025.104516","DOIUrl":"10.1016/j.jconhyd.2025.104516","url":null,"abstract":"<div><div>This study aims to evaluate the intrinsic vulnerability of the Moeda Syncline, located in the western portion of the Quadrilátero Ferrífero in the State of Minas Gerais, Brazil. This region stands out for hosting important gold and iron ore mines and is the target of geological studies due to its structural complexity and economic importance. The Moeda Syncline is responsible for feeding springs and important tributaries in the hydrographic basins of the Velhas and Paraopeba rivers, thus contributing with a great part of the water consumed by the population of the Metropolitan Region of Belo Horizonte (RMBH). The main threats to the sustainable use of water in the Moeda Syncline are urban expansion and mining enterprises. From the mapping of vulnerability to contamination it is possible to identify the areas that need to receive priority treatment. To assess the vulnerability of aquifers, four methods were selected according to the types of aquifers, namely: DRASTIC, SINTACS, GOD and EPIK. The DRASTIC method was developed to be used in any type of aquifer, the SINTACS method was developed for fissural aquifers, the GOD method for porous aquifers and the EPIK method for karst aquifers. In addition to the application of the proposed methods, modifications were made in order to adapt the method to the physical characteristics of the region, considering the less efficient parameters. From the results obtained, it was found that the most appropriate method to assess the vulnerability of the study area are those specific to each type of aquifer, considering that the proposed adaptations proved to be more efficient than the original methods. In addition, it was observed that the DRASTIC method, developed for all types of aquifers, demonstrates efficacy by indicating that the main aquifers susceptible to contamination are those of the cover layers, Cauê and Gandarela.</div></div>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":"270 ","pages":"Article 104516"},"PeriodicalIF":3.5,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143395581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zahra Ramezani, Mohammad Bagher Farhangi, Nasrin Ghorbanzadeh, Mahmoud Shabanpour
{"title":"Escherichia coli transport in two acidic soils: Effect of microbially induced calcite precipitation technology","authors":"Zahra Ramezani, Mohammad Bagher Farhangi, Nasrin Ghorbanzadeh, Mahmoud Shabanpour","doi":"10.1016/j.jconhyd.2024.104493","DOIUrl":"10.1016/j.jconhyd.2024.104493","url":null,"abstract":"<div><div>Microbially induced calcite precipitation (MICP) while neutralizing soil pH, can lead to pore clogging which in turn may reduce bacteria transport. This study aimed to evaluate the effectiveness of the MICP process for <em>E. coli</em> filtration in two acidic soils. Two soil samples from Amlash (Am) and Lahijan (La) areas with pH values of 5.88 and 3.93, repectively, were collected and poured into plastic columns (14.92 × 2.4 cm). For the MICP reaction, the soil columns were saturated with a solidification solution (1:1 urea: CaCl<sub>2</sub>, 1.5 M) and <em>Sporosarcina pasteurii</em> (∼10<sup>8</sup> cell mL<sup>−1</sup>), and incubated at 30 °C for 72 h. Leaching experiments were conducted on both MICP-treated and control soil columns at steady-state, saturated flow condition. A pulse of influent (0.1 PV) containing <em>Escherichia coli</em> (ciprofloxacin-resistant) (∼10<sup>8</sup> cell mL<sup>−1</sup>) and bromide tracer (1000 mg L<sup>−1</sup> KBr) was added at the top of the soil columns, followed by sterile water to collect the effluent. Recovered <em>E. coli</em>, and Br<sup>−</sup>, HCO<sub>3</sub><sup>−</sup>, NH<sub>4</sub><sup>+</sup>, Ca<sup>2+</sup> ions were measured in the leachate. The profile of residual <em>E. coli</em> count, urease activity, and bioprecipitated CaCO<sub>3</sub> content were also assessed in the soil. Correlated with bioprecipitated CaCO<sub>3</sub>, the hydraulic conductivity coefficients (<em>K</em><sub>s</sub>) was reduced by 4.4 and 5.8 times after MICP treatment in Am and La soils, respectively, thus bacteria leaching was significantly reduced. A higher filtration coefficient (<em>λ</em><sub><em>f</em></sub>) and recovery rate of <em>E. coli</em> were calculated in the La soil column, likely due to the lower pH and higher anion exchange capacity, which induced greater bacterial mortality and electrostatic attraction, respectively. MICP treatment reduced the average and cumulative count of <em>E. coli</em> by ∼3.4 times compared to the control column. In conclusion, the application of MICP in acidic soil increased soil pH and reduced the risk of <em>E. coli</em> transport to deeper layers by reducing soil hydraulic conductivity.</div></div>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":"269 ","pages":"Article 104493"},"PeriodicalIF":3.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142927310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shahabaldin Rezania , Saba Miri , Jinwoo Cho , Jin Hur , Hesam Kamyab , Negisa Darajeh , Ali Akbar Mohammadi , Farzad Molani , Mohsen Taghavijeloudar
{"title":"Microplastic pollution in the marine environment: Distribution factors and mitigation strategies in different oceans","authors":"Shahabaldin Rezania , Saba Miri , Jinwoo Cho , Jin Hur , Hesam Kamyab , Negisa Darajeh , Ali Akbar Mohammadi , Farzad Molani , Mohsen Taghavijeloudar","doi":"10.1016/j.jconhyd.2025.104496","DOIUrl":"10.1016/j.jconhyd.2025.104496","url":null,"abstract":"<div><div>As the COVID-19 pandemic began in 2020, plastic usage spiked, and microplastic (MP) generation has increased dramatically. It is documented that MP can transfer from the source to the ocean environment where they accumulate as the destination. Therefore, it is essential to understand their transferring pathways and effective environmental factors to determine the distribution of MPs in the marine environment. This article reviews the environmental factors that affect MP distribution in the oceans including abiotic such as ocean currents and wind direction, physical/chemical and biological reactions of MPs, natural sinking, particle size and settling velocity, and biotic including biofouling, and incorporation in fecal material. It was found that velocity and physical shearing are the most important parameters for MP accumulation in the deep ocean. Besides, this review proposes different research-based, national-level, and global-level strategies for the mitigation of MPs after the pandemic. Based on the findings, the level of MP pollution in the oceans is directly correlated to coastal areas with high populations, particularly in African and Asian countries. Future studies should focus on establishing predictive models based on the movement and distribution of MPs to mitigate the levels of pollution.</div></div>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":"269 ","pages":"Article 104496"},"PeriodicalIF":3.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142965171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rose C.K. Mumbi , Mark R. Williams , William I. Ford , James J. Camberato , Chad J. Penn
{"title":"Identifying dissolved reactive phosphorus sources in agricultural runoff and leachate using phosphate oxygen isotopes","authors":"Rose C.K. Mumbi , Mark R. Williams , William I. Ford , James J. Camberato , Chad J. Penn","doi":"10.1016/j.jconhyd.2025.104501","DOIUrl":"10.1016/j.jconhyd.2025.104501","url":null,"abstract":"<div><div>Agricultural phosphorus (P) losses may result from either recently applied fertilizers or from P accumulated in soil and sediment. While both P sources pose an environmental risk to freshwater systems, differentiating between sources is crucial for identifying and implementing management practices to decrease loss. In this study, laboratory rainfall simulations were completed on runoff boxes and undisturbed soil columns before and after fertilizer application. The oxygen-18 signature of phosphate (δ<sup>18</sup>O<sub>PO4</sub>) in fertilizer, surface runoff, subsurface leachate, and soil were analyzed (<em>n</em> = 107 samples) to quantify new (recently applied) and old (soil) P losses in runoff and leachate. Results showed that dissolved reactive P (DRP) concentration in runoff and leachate substantially increased during the rainfall simulation immediately after fertilizer application, with runoff and leachate δ<sup>18</sup>O<sub>PO4</sub> similar to fertilizer δ<sup>18</sup>O<sub>PO4</sub> signatures. Greater than 90 % of the DRP load during this event could be attributed to direct loss of P from fertilizer using δ<sup>18</sup>O<sub>PO4</sub>. Beyond the first rainfall event after fertilizer application, DRP concentration decreased and leachate δ<sup>18</sup>O<sub>PO4</sub> values differed from the fertilizer values. Interpretation of isotope results was challenging because both abiotic (isotope fractionation during transport) and biotic (P cycling) processes may have influenced δ<sup>18</sup>O<sub>PO4</sub> signatures during these subsequent events. While abiotic effects on δ<sup>18</sup>O<sub>PO4</sub> appear more probable given the experimental conditions in the current study (high soil test P concentration, short duration between rainfall simulations, and strong relationship between event water and δ<sup>18</sup>O<sub>PO4</sub> signature), tracing or separating P sources remains highly uncertain during these events post-fertilizer application. Findings highlight both potential opportunities and challenges of using δ<sup>18</sup>O<sub>PO4</sub> to trace sources of P through the landscape.</div></div>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":"269 ","pages":"Article 104501"},"PeriodicalIF":3.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143006330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Siyang Sun , Shuyi Yu , Ruihan Du , Yang Wang , Chunli Kang
{"title":"Freeze-thaw effect on adsorption and transport of two sulfonamides in soil: Batch and column studies","authors":"Siyang Sun , Shuyi Yu , Ruihan Du , Yang Wang , Chunli Kang","doi":"10.1016/j.jconhyd.2025.104509","DOIUrl":"10.1016/j.jconhyd.2025.104509","url":null,"abstract":"<div><div>Freeze-thaw cycles (FTCs) have significant impacts on soil physicochemical properties, subsequently altering the fate of contaminants in soil. However, studies investigating the environmental behavior of antibiotics in soil subjected to FTCs are limited. This study investigated the effects of FTCs on the adsorption and transport of two commonly used sulfonamide antibiotics (SAs), sulfamethoxazole (SMX) and sulfapyridine (SPY), in soil. The results revealed that FTCs alter the adsorption behavior of SMX and SPY on the soil. Initially, after 1 FTC, the adsorption of both SMX and SPY decreased; however, subsequently, this adsorption gradually increased as the number of FTCs increased. This is because, during the FTCs, the increased soil pH hindered the adsorption of SAs by intensifying electrostatic repulsion between anionic SAs and soil particles. Subsequently, the increases in clay content, specific surface area (SA), small pores, and dissolved organic matter (DOM) provided more adsorption sites, overriding the initial pH effects and ultimately dominating the adsorption process. FTCs altered soil properties, which not only changed the adsorption of SAs but also induced the alteration of pore structure and the generation of preferential flow. During the vertical transport process, such changes in pore pathways played a dominant role, facilitating SMX and SPY transport in soil. The addition of heavy metals (Cd<sup>2+</sup> and Cu<sup>2+</sup>) contributed to facilitating the transport of SMX and SPY in both unfrozen and freeze-thaw-treated soil columns. In the context of global climate change, this study offers valuable insights into the fate and environmental risks associated with pollutants in soil.</div></div>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":"269 ","pages":"Article 104509"},"PeriodicalIF":3.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143350161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fallon Nacaratte, Anahi Valdivia, Sylvia V. Copaja
{"title":"Comparison of adsorption capacity of 4-Nonylphenol on conventional and biodegradable microplastics aged under natural water","authors":"Fallon Nacaratte, Anahi Valdivia, Sylvia V. Copaja","doi":"10.1016/j.jconhyd.2024.104486","DOIUrl":"10.1016/j.jconhyd.2024.104486","url":null,"abstract":"<div><div>This study investigated the adsorption of 4-Nonylphenol (4-NP) on aged microplastics (MPs) composed of polyethylene terephthalate (PET) and poly(butylene-adipate-<em>co</em>-terephthalate)/polylactic acid (PBAT/PLA). Morphological analysis revealed wear, wrinkles, and increased surface roughness in both aged MPs, with X-ray diffraction showing slight increases in crystallinity. Infrared spectroscopy showed an increase in the carbonyl index from 2.78 to 4.37 for PBAT/PLA and 0.51 to 2.32 for PET after aging.</div><div>The natural water from the San Pedro River in Chile Atacama region (5.91 mS·cm<sup>−1</sup> conductivity, 3.25 PSU salinity, 2955 mg·L<sup>−1</sup> total dissolved solids, 435 mg·L<sup>−1</sup> CaCO<sub>3</sub> hardness) was used as the environmental medium and compared with a 0.01 mol·L<sup>−1</sup> CaCl<sub>2</sub> as a model solution.</div><div>Kinetic modeling showed a decrease in 4-NP percentage removal from 90.0 % (2277 μg∙g<sup>−1</sup> adsorption capacity) to 50.2 % (1268 μg∙g<sup>−1</sup>) for PET and from 86.8 % (2087 μg∙g<sup>−1</sup>) to 70.3 % (1955 μg∙g<sup>−1</sup>) for PBAT/PLA when comparing the model solution to natural water, with 30 and 84 h equilibrium times, respectively. Isotherm data showed that 4-NP/PET fits BET n-layer and Temkin models, while 4-NP-PBAT/PLA fits the Toth and Hill models</div><div>The ionic composition of natural water induces cation attraction to polarized MPs surfaces, intensifying competition for adsorption sites. This involves ion and molecular cooperation, 4-NP reorientation, external diffusion effects, and surface oxidation variations, which are attributed to explaining the bilayer (PET) and monolayer (PBAT/PLA) formation.</div><div>This work contributes to understanding MP pollution and the importance of considering the bioplastics life cycle, since their waste presents significant potential to resist external factors for transporting contaminants.</div></div>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":"269 ","pages":"Article 104486"},"PeriodicalIF":3.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142822273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}