Uranium dynamics at an iron ore mine site in Northern Sweden: Sources and mobility along the mine value chain

IF 3.5 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Vimbainashe L. Dzimbanhete , Lena Alakangas , Torbjörn Karlsson , Elsa Peinerud , Oscar Paulsson , Olof Martinsson , Thomas Aiglsperger
{"title":"Uranium dynamics at an iron ore mine site in Northern Sweden: Sources and mobility along the mine value chain","authors":"Vimbainashe L. Dzimbanhete ,&nbsp;Lena Alakangas ,&nbsp;Torbjörn Karlsson ,&nbsp;Elsa Peinerud ,&nbsp;Oscar Paulsson ,&nbsp;Olof Martinsson ,&nbsp;Thomas Aiglsperger","doi":"10.1016/j.jconhyd.2025.104530","DOIUrl":null,"url":null,"abstract":"<div><div>Uranium (U) release from mining has been typically associated with former U mine sites, but trace U levels in iron or base metal ores can also lead to U mobilization into ground and surface water posing potential risks due to U's chemical toxicity and radioactivity. This study investigates U sources and mobility at an iron ore mine site in Northern Sweden, where U concentrations (median 1.8 μg/l) exceeding the Swedish annual guideline value of 0.17 μg/l have been detected in a river receiving excess process water from the mine site. Drill core samples were characterized to identify the minerals hosting U in the iron ore and sequential extraction tests were conducted on solid samples from the processing plant to assess U mobility potential. Results indicate that, given its low U content, iron ore is not a significant source of the elevated U levels detected in the process water. Thorite, the main U-bearing mineral remains stable under the neutral to alkaline pH conditions in the processing plant. U speciation calculations on process water monitoring data, performed in PHREEQC with the PRODATA thermodynamic database, revealed dominant calcium uranyl carbonate complexes, specifically Ca<sub>2</sub>UO<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub> and CaUO<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub><sup>2−</sup>. Mine water from Leveäniemi and Gruvberget open pits, particularly Leveäniemi, was identified as the main source of U to the process water in the recirculation system. The U in mine water originates from groundwater infiltration into the open pits and leaching of U from the open pit wall rocks. Further investigation of these sources and U's geochemical behavior in mine water before it mixes with process water in the processing plant is crucial for understanding the processes driving elevated downstream U concentrations.</div></div>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":"270 ","pages":"Article 104530"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of contaminant hydrology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016977222500035X","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Uranium (U) release from mining has been typically associated with former U mine sites, but trace U levels in iron or base metal ores can also lead to U mobilization into ground and surface water posing potential risks due to U's chemical toxicity and radioactivity. This study investigates U sources and mobility at an iron ore mine site in Northern Sweden, where U concentrations (median 1.8 μg/l) exceeding the Swedish annual guideline value of 0.17 μg/l have been detected in a river receiving excess process water from the mine site. Drill core samples were characterized to identify the minerals hosting U in the iron ore and sequential extraction tests were conducted on solid samples from the processing plant to assess U mobility potential. Results indicate that, given its low U content, iron ore is not a significant source of the elevated U levels detected in the process water. Thorite, the main U-bearing mineral remains stable under the neutral to alkaline pH conditions in the processing plant. U speciation calculations on process water monitoring data, performed in PHREEQC with the PRODATA thermodynamic database, revealed dominant calcium uranyl carbonate complexes, specifically Ca2UO2(CO3)3 and CaUO2(CO3)32−. Mine water from Leveäniemi and Gruvberget open pits, particularly Leveäniemi, was identified as the main source of U to the process water in the recirculation system. The U in mine water originates from groundwater infiltration into the open pits and leaching of U from the open pit wall rocks. Further investigation of these sources and U's geochemical behavior in mine water before it mixes with process water in the processing plant is crucial for understanding the processes driving elevated downstream U concentrations.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of contaminant hydrology
Journal of contaminant hydrology 环境科学-地球科学综合
CiteScore
6.80
自引率
2.80%
发文量
129
审稿时长
68 days
期刊介绍: The Journal of Contaminant Hydrology is an international journal publishing scientific articles pertaining to the contamination of subsurface water resources. Emphasis is placed on investigations of the physical, chemical, and biological processes influencing the behavior and fate of organic and inorganic contaminants in the unsaturated (vadose) and saturated (groundwater) zones, as well as at groundwater-surface water interfaces. The ecological impacts of contaminants transported both from and to aquifers are of interest. Articles on contamination of surface water only, without a link to groundwater, are out of the scope. Broad latitude is allowed in identifying contaminants of interest, and include legacy and emerging pollutants, nutrients, nanoparticles, pathogenic microorganisms (e.g., bacteria, viruses, protozoa), microplastics, and various constituents associated with energy production (e.g., methane, carbon dioxide, hydrogen sulfide). The journal''s scope embraces a wide range of topics including: experimental investigations of contaminant sorption, diffusion, transformation, volatilization and transport in the surface and subsurface; characterization of soil and aquifer properties only as they influence contaminant behavior; development and testing of mathematical models of contaminant behaviour; innovative techniques for restoration of contaminated sites; development of new tools or techniques for monitoring the extent of soil and groundwater contamination; transformation of contaminants in the hyporheic zone; effects of contaminants traversing the hyporheic zone on surface water and groundwater ecosystems; subsurface carbon sequestration and/or turnover; and migration of fluids associated with energy production into groundwater.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信