{"title":"Intertwining clonality and resistance: Staphylococcus aureus in the antibiotic era.","authors":"Henry F Chambers, Vance G Fowler","doi":"10.1172/JCI185824","DOIUrl":"10.1172/JCI185824","url":null,"abstract":"","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":"134 19","pages":""},"PeriodicalIF":13.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444188/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S Farshid Moussavi-Harami, Simon J Cleary, Mélia Magnen, Yurim Seo, Catharina Conrad, Bevin C English, Longhui Qiu, Kristin M Wang, Clare L Abram, Clifford A Lowell, Mark R Looney
{"title":"Neutrophil-specific Shp1 loss results in lethal pulmonary hemorrhage in mouse models of acute lung injury.","authors":"S Farshid Moussavi-Harami, Simon J Cleary, Mélia Magnen, Yurim Seo, Catharina Conrad, Bevin C English, Longhui Qiu, Kristin M Wang, Clare L Abram, Clifford A Lowell, Mark R Looney","doi":"10.1172/JCI183161","DOIUrl":"10.1172/JCI183161","url":null,"abstract":"<p><p>The acute respiratory distress syndrome (ARDS) is associated with significant morbidity and mortality and neutrophils are critical to its pathogenesis. Neutrophil activation is closely regulated by inhibitory tyrosine phosphatases including Src homology region 2 domain containing phosphatase-1 (Shp1). Here, we report that loss of neutrophil Shp1 in mice produced hyperinflammation and lethal pulmonary hemorrhage in sterile inflammation and pathogen-induced models of acute lung injury (ALI) through a Syk kinase-dependent mechanism. We observed large intravascular neutrophil clusters, perivascular inflammation, and excessive neutrophil extracellular traps in neutrophil-specific Shp1 knockout mice suggesting an underlying mechanism for the observed pulmonary hemorrhage. Targeted immunomodulation through the administration of a Shp1 activator (SC43) reduced agonist-induced reactive oxygen species in vitro and ameliorated ALI-induced alveolar neutrophilia and NETs in vivo. We propose that the pharmacologic activation of Shp1 has the potential to fine-tune neutrophil hyperinflammation that is central to the pathogenesis of ARDS.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":" ","pages":""},"PeriodicalIF":13.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marcelo Chávez, Anushweta Asthana, Peter K Jackson
{"title":"Ciliary localization of GPR75 promotes fat accumulation in mice.","authors":"Marcelo Chávez, Anushweta Asthana, Peter K Jackson","doi":"10.1172/JCI185059","DOIUrl":"10.1172/JCI185059","url":null,"abstract":"<p><p>Obesity is a growing public health concern that affects the longevity and lifestyle of all human populations including children and older individuals. Diverse factors drive obesity, making it challenging to understand and treat. While recent studies highlight the importance of GPCR signaling for metabolism and fat accumulation, we lack a molecular description of how obesogenic signals accumulate and propagate in cells, tissues, and organs. In this issue of the JCI, Jiang et al. utilized germline mutagenesis to generate a missense variant of GRP75, encoded by the Thinner allele, which resulted in mice with a lean phenotype. GPR75 accumulated in the cilia of hypothalamic neurons. However, mice with the Thinner allele showed defective ciliary localization with resistance to fat accumulation. Additionally, GPR75 regulation of fat accumulation appeared independent of leptin and ADCY3 signaling. These findings shed light on the role of GPR75 in fat accumulation and highlight the need to identify relevant ligands.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":"134 19","pages":""},"PeriodicalIF":13.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444157/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sleepless nights and social plights: medial septum GABAergic hyperactivity in a neuroligin 3-deficient autism model.","authors":"Claire E Cho, Dahee Jung, Reesha R Patel","doi":"10.1172/JCI184795","DOIUrl":"10.1172/JCI184795","url":null,"abstract":"<p><p>Social deficits represent a core symptom domain of autism spectrum disorder (ASD), which is often comorbid with sleep disturbances. In this issue of the JCI, Sun et al. explored a medial septum (MS) circuit linking these behaviors in a neuroligin 3 conditional knockout model of autism. They identified GABAergic neuron hyperactivity following neuroligin 3 deletion in the MS. This hyperactivity resulted in the inhibition of the downstream preoptic area (POA) and hippocampal CA2 region, resulting in sleep loss and social memory deficits, respectively. Inactivating the hyperactive MS GABA neurons or activating the POA or CA2 rescued the behavioral deficits. Together, these findings deepen our understanding of neural circuits underlying social and sleep deficits in ASD.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":"134 19","pages":""},"PeriodicalIF":13.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444191/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ana Barettino, Cristina González-Gómez, Pilar Gonzalo, María J Andrés-Manzano, Carlos R Guerrero, Francisco M Espinosa, Rosa M Carmona, Yaazan Blanco, Beatriz Dorado, Carlos Torroja, Fátima Sánchez-Cabo, Ana Quintas, Alberto Benguría, Ana Dopazo, Ricardo García, Ignacio Benedicto, Vicente Andrés
{"title":"Endothelial YAP/TAZ activation promotes atherosclerosis in a mouse model of Hutchinson-Gilford progeria syndrome.","authors":"Ana Barettino, Cristina González-Gómez, Pilar Gonzalo, María J Andrés-Manzano, Carlos R Guerrero, Francisco M Espinosa, Rosa M Carmona, Yaazan Blanco, Beatriz Dorado, Carlos Torroja, Fátima Sánchez-Cabo, Ana Quintas, Alberto Benguría, Ana Dopazo, Ricardo García, Ignacio Benedicto, Vicente Andrés","doi":"10.1172/JCI173448","DOIUrl":"10.1172/JCI173448","url":null,"abstract":"<p><p>Hutchinson-Gilford progeria syndrome (HGPS) is an extremely rare disease caused by the expression of progerin, an aberrant protein produced by a point mutation in the LMNA gene. HGPS patients show accelerated aging and die prematurely mainly from complications of atherosclerosis such as myocardial infarction, heart failure, or stroke. However, the mechanisms underlying HGPS vascular pathology remain ill-defined. We used single-cell RNA sequencing to characterize the aorta in progerin-expressing LmnaG609G/G609G mice and wild-type controls, with a special focus on endothelial cells (ECs). HGPS ECs showed gene expression changes associated with extracellular matrix alterations, increased leukocyte extravasation, and activation of the yes-associated protein 1/transcriptional activator with PDZ-binding domain (YAP/TAZ) mechanosensing pathway, all validated by different techniques. Atomic force microscopy experiments demonstrated stiffer subendothelial extracellular matrix in progeroid aortae, and ultrasound assessment of live HGPS mice revealed disturbed aortic blood flow, both key inducers of the YAP/TAZ pathway in ECs. YAP/TAZ inhibition with verteporfin reduced leukocyte accumulation in the aortic intimal layer and decreased atherosclerosis burden in progeroid mice. Our findings identify endothelial YAP/TAZ signaling as a key mechanism of HGPS vascular disease and open a new avenue for the development of YAP/TAZ-targeting drugs to ameliorate progerin-induced atherosclerosis.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563688/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The first century of JCI and beyond.","authors":"Elizabeth M McNally","doi":"10.1172/JCI186113","DOIUrl":"10.1172/JCI186113","url":null,"abstract":"","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":"134 19","pages":""},"PeriodicalIF":13.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444159/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"2024 Lasker Award Recipient Zhijian Chen elucidates how DNA stimulates immunity.","authors":"Amy B Heimberger","doi":"10.1172/JCI186104","DOIUrl":"10.1172/JCI186104","url":null,"abstract":"","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":" ","pages":""},"PeriodicalIF":13.3,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11446599/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142288338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Joel Habener, Svetlana Mojsov, and Lotte Bjerre Knudsen awarded Lasker prize for pioneering work on GLP-1.","authors":"Hossein Ardehali","doi":"10.1172/JCI186225","DOIUrl":"10.1172/JCI186225","url":null,"abstract":"","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":" ","pages":""},"PeriodicalIF":13.3,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11446598/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142288339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mackenzie Newman, Henry J Donahue, Gretchen N Neigh
{"title":"Connecting the dots: sex, depression, and musculoskeletal health.","authors":"Mackenzie Newman, Henry J Donahue, Gretchen N Neigh","doi":"10.1172/JCI180072","DOIUrl":"https://doi.org/10.1172/JCI180072","url":null,"abstract":"<p><p>Depression and multiple musculoskeletal disorders are overrepresented in women compared with men. Given that depression is a modifiable risk factor and improvement of depressive symptoms increases positive outcomes following orthopedic intervention, efforts to improve clinical recognition of depressive symptoms and increased action toward ameliorating depressive symptoms among orthopedic patients are positioned to reduce complications and positively affect patient-reported outcomes. Although psychosocial factors play a role in the manifestation and remittance of depression, it is also well appreciated that primary biochemical changes are capable of causing and perpetuating depression. Unique insight for novel treatments of depression may be facilitated by query of the bidirectional relationship between musculoskeletal health and depression. This Review aims to synthesize the diverse literature on sex, depression, and orthopedics and emphasize the potential for common underlying biological substrates. Given the overrepresentation of depression and musculoskeletal disorders among women, increased emphasis on the biological drivers of the co-occurrence of these disorders is positioned to improve women's health.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":"134 18","pages":""},"PeriodicalIF":13.3,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11405046/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142288343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhi-Jie Li, Bo He, Alice Domenichini, Jiulia Satiaputra, Kira H Wood, Devina D Lakhiani, Abate A Bashaw, Lisa M Nilsson, Ji Li, Edward R Bastow, Anna Johansson-Percival, Elena Denisenko, Alistair Rr Forrest, Suraj Sakaram, Rafael Carretero, Günter J Hämmerling, Jonas A Nilsson, Gabriel Yf Lee, Ruth Ganss
{"title":"Pericyte phenotype switching alleviates immunosuppression and sensitizes vascularized tumors to immunotherapy in preclinical models.","authors":"Zhi-Jie Li, Bo He, Alice Domenichini, Jiulia Satiaputra, Kira H Wood, Devina D Lakhiani, Abate A Bashaw, Lisa M Nilsson, Ji Li, Edward R Bastow, Anna Johansson-Percival, Elena Denisenko, Alistair Rr Forrest, Suraj Sakaram, Rafael Carretero, Günter J Hämmerling, Jonas A Nilsson, Gabriel Yf Lee, Ruth Ganss","doi":"10.1172/JCI179860","DOIUrl":"https://doi.org/10.1172/JCI179860","url":null,"abstract":"<p><p>T cell-based immunotherapies are a promising therapeutic approach for multiple malignancies, but their efficacy is limited by tumor hypoxia arising from dysfunctional blood vessels. Here, we report that cell-intrinsic properties of a single vascular component, namely the pericyte, contribute to the control of tumor oxygenation, macrophage polarization, vessel inflammation, and T cell infiltration. Switching pericyte phenotype from a synthetic to a differentiated state reverses immune suppression and sensitizes tumors to adoptive T cell therapy, leading to regression of melanoma in mice. In melanoma patients, improved survival is correlated with enhanced pericyte maturity. Importantly, pericyte plasticity is regulated by signaling pathways converging on Rho kinase activity, with pericyte maturity being inducible by selective low-dose therapeutics that suppress pericyte MEK, AKT, or notch signaling. We also show that low-dose targeted anticancer therapy can durably change the tumor microenvironment without inducing adaptive resistance, creating a highly translatable pathway for redosing anticancer targeted therapies in combination with immunotherapy to improve outcome.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":"134 18","pages":""},"PeriodicalIF":13.3,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11405053/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142288356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}