{"title":"Supportive care or exhausted neglect: the role of microglia at the end stage of prion disease.","authors":"Victoria A Lawson","doi":"10.1172/JCI186940","DOIUrl":"https://doi.org/10.1172/JCI186940","url":null,"abstract":"<p><p>The transmissible nature of prion diseases enables reproduction of neurodegeneration in small animal models that faithfully follows the disease process observed in the natural disease of animals and humans. This allows the temporal development of disease to be investigated and correlated with pathology in a complex brain environment. In this issue of the JCI, Makarava et al. describe a shift in microglia morphology from an active phagocytic phenotype to a passive association with neuronal cell bodies. Whether this morphological change reflects a supportive action of microglia in response to neuronal impairment or exhaustion of PrPSc-laden microglia remains to be determined. However, if microglial populations effectively contain PrPSc propagation early in the infection process, as the current study suggests, identifying ways to maintain or enhance the function of this cell population could be the key to prolonging patient survival.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":"134 23","pages":""},"PeriodicalIF":13.3,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11601896/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142769427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Irene González-Navarro, Víctor Urrea, Cristina Gálvez, Maria Del Carmen Garcia-Guerrero, Sara Morón-López, Maria C Puertas, Eulàlia Grau, Beatriz Mothe, Lucía Bailón, Cristina Miranda, Felipe García, Lorna Leal, Linos Vandekerckhove, Vincent C Marconi, Rafick P Sekaly, Bonaventura Clotet, Javier Martinez-Picado, Maria Salgado
{"title":"Assessing advances in three decades of clinical antiretroviral therapy on the HIV-1 reservoir.","authors":"Irene González-Navarro, Víctor Urrea, Cristina Gálvez, Maria Del Carmen Garcia-Guerrero, Sara Morón-López, Maria C Puertas, Eulàlia Grau, Beatriz Mothe, Lucía Bailón, Cristina Miranda, Felipe García, Lorna Leal, Linos Vandekerckhove, Vincent C Marconi, Rafick P Sekaly, Bonaventura Clotet, Javier Martinez-Picado, Maria Salgado","doi":"10.1172/JCI183952","DOIUrl":"https://doi.org/10.1172/JCI183952","url":null,"abstract":"<p><strong>Background: </strong>Antiretroviral therapy (ART) has improved the clinical management of HIV-1 infection. However, little is known about how the latest ART recommendations affect the heterogeneity of HIV-1 reservoir size.</p><p><strong>Methods: </strong>We used a complete statistical approach to outline parameters underlying diversity in HIV-1 reservoir size in a cohort of 892 people with HIV-1 (PWH) on suppressive ART for >3 years. Total HIV-1-DNA levels were measured in PBMCs using digital droplet PCR (ddPCR).</p><p><strong>Results: </strong>We classified 179 (20%) participants as Low Viral Reservoir Treated (LoViReT, <50 HIV-1-DNA copies/106 PBMCs). Twenty variables were collected to explore their association with the LoViReT phenotype using machine learning approaches. Nadir CD4 and zenith pre-ART viral load were closely associated with LoViReT status, with lower CD4 recovery, shorter time from diagnosis to undetectable viral load, and initiation of treatment with an integrase inhibitor (InSTI)-containing regimen. Initiating ART with any InSTI was also associated with shorter time to undetectable viremia. Locally estimated scatterplot smoothing (LOESS) regression revealed a progressive reduction in the size of the HIV-1 reservoir in individuals who started ART after 2007. Similarly, higher nadir CD4 and shorter time to undetectable viremia were observed when treatment was initiated after that year.</p><p><strong>Conclusion: </strong>Our findings demonstrate that the progressive implementation of earlier, universal treatment at diagnosis and the use of InSTIs affect the size of the HIV-1 reservoir. Our work shows that effective management of infection is the first step toward reducing the reservoir and brings us closer to achieving a cure.</p><p><strong>Funding: </strong>U.S. National Institutes of Health, Division of AIDS at the National Institute of Allergy and Infectious Diseases, Merck Sharp & Dohme.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":" ","pages":""},"PeriodicalIF":13.3,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142750465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiang-Wei Kong, Guo-Long Bu, Hua Chen, Yu-Hua Huang, Zhiwei Liu, Yin-Feng Kang, Yan-Cheng Li, Xia Yu, Biao-Hua Wu, Zi-Qian Li, Xin-Chun Chen, Shang-Hang Xie, Dong-Feng Lin, Tong Li, Shu-Mei Yan, Run-Kun Han, Nan Huang, Qian-Yu Wang, Yan Li, Ao Zhang, Qian Zhong, Xiao-Ming Huang, Weimin Ye, Ming-Fang Ji, Yong-Lin Cai, Su-Mei Cao, Mu-Sheng Zeng
{"title":"A large-scale population-based study reveals that gp42-IgG antibody is protective against Epstein-Barr virus-associated nasopharyngeal carcinoma.","authors":"Xiang-Wei Kong, Guo-Long Bu, Hua Chen, Yu-Hua Huang, Zhiwei Liu, Yin-Feng Kang, Yan-Cheng Li, Xia Yu, Biao-Hua Wu, Zi-Qian Li, Xin-Chun Chen, Shang-Hang Xie, Dong-Feng Lin, Tong Li, Shu-Mei Yan, Run-Kun Han, Nan Huang, Qian-Yu Wang, Yan Li, Ao Zhang, Qian Zhong, Xiao-Ming Huang, Weimin Ye, Ming-Fang Ji, Yong-Lin Cai, Su-Mei Cao, Mu-Sheng Zeng","doi":"10.1172/JCI180216","DOIUrl":"https://doi.org/10.1172/JCI180216","url":null,"abstract":"<p><strong>Background: </strong>Epstein-Barr virus (EBV) is associated with nasopharyngeal carcinoma (NPC), but the existence of NPC protective antibody against EBV-associated antigens remains inconclusive.</p><p><strong>Methods: </strong>NPC cases and matched controls were identified from prospective cohorts comprising 75,481 participants in southern China. ELISA and conditional logistic regression were applied to assess effects of gp42-IgG on NPC. The expression of HLA-II, the gp42 receptor, in nasopharyngeal atypical dysplasia and its impact on EBV infecting epithelial cells were evaluated.</p><p><strong>Findings: </strong>gp42-IgG titers were significantly lower in NPC cases compared to controls across various follow-up years before NPC diagnosis (P<0.05). Individuals in the highest quartile of gp42-IgG titers had a 71% NPC risk reduction comparing to those in the lowest quartile (odds ratios [OR]Q4vsQ1=0.29, 95% confidence intervals [CIs]=0·15 to 0·55, P<0.001). Each unit antibody titer increase was associated with 34% lower risk of NPC (OR=0.66, 95% CI=0.54 to 0.81, Ptrend <0.001). Their protective effect was observed in cases diagnosed ≥5 years, 1-5 years and <1 year after blood collection (P<0.05). HLA-II expression was detected in 13 of 27 nasopharyngeal atypical dysplasia and its overexpression substantially promoted epithelial-cell-origin EBV infection.</p><p><strong>Conclusion: </strong>Elevated EBV gp42-IgG titers can reduce NPC risk, indicating gp42 as a potential EBV prophylactic vaccine design target.</p><p><strong>Trial registration: </strong>NCT00941538, NCT02501980, ChiCTR2000028776, ChiCTR2100041628.</p><p><strong>Funding: </strong>Noncommunicable Chronic Diseases-National Science and Technology Major Project, National Natural Science Foundation of China, Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program, Central Financial Transfer Payment Projects of the Chinese Government, Cancer Research Grant of Zhongshan City.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":" ","pages":""},"PeriodicalIF":13.3,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142728951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Weirui Guo, Matthew Rioux, Frances Shaffo, Yuhui Hu, Ze Yu, Chao Xing, Steven J Gray
{"title":"AAV9/SLC6A1 gene therapy rescues abnormal EEG patterns and cognitive behavioral deficiencies in Slc6a1-/- mice.","authors":"Weirui Guo, Matthew Rioux, Frances Shaffo, Yuhui Hu, Ze Yu, Chao Xing, Steven J Gray","doi":"10.1172/JCI182235","DOIUrl":"https://doi.org/10.1172/JCI182235","url":null,"abstract":"<p><p>The SLC6A1 gene encodes the gamma-aminobutyric acid (GABA) transporter GAT-1, the deficiency of which is associated with infantile encephalopathy with intellectual disability. We designed two AAV9 vectors, with either the JeT or MeP promoter, and conducted preclinical gene therapy studies using heterozygous and homozygous Slc6a1 KO mice at different developmental ages and various routes of administration. Neonatal intracerebroventricular administration of either vector resulted in significantly normalized EEG patterns in Slc6a1-/- or Slc6a1+/- mice, as well as improvement in several behavioral phenotypes of Slc6a1-/- mice. However, some mortality and adverse effects were observed in neonatal-treated mice. Intrathecal administration of either vector at postnatal day (PND) 5 normalized EEG patterns in Slc6a1+/- mice, but in Slc6a1-/- mice the treatment only rescued nest building without impact on EEG. Both vectors were well-tolerated in all mice treated at PND5 or later (including WT mice), up to 1 year post-injection. Overall, our data demonstrate compelling efficacy when mice are treated at an early development age. We also identified that outside of the neonatal treatment window, the severe homozygous KO model is more refractory to treatment, whereas our treatments in the heterozygous mice, which genotypically match human patients, have resulted in stronger benefits.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":" ","pages":""},"PeriodicalIF":13.3,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142728896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wen Wei, Xueqin Gao, Jiawei Qian, Lei Li, Chen Zhao, Li Xu, Yanfei Zhu, Zhenzhen Liu, Nengrong Liu, Xueqing Wang, Zhicong Jin, Bowen Liu, Lan Xu, Jin Dong, Suping Zhang, Jiarong Wang, Yumu Zhang, Yao Yu, Zhanjun Yan, Yanjun Yang, Jie Lu, Yixuan Fang, Na Yuan, Jianrong Wang
{"title":"Beclin 1 prevents ISG15-mediated cytokine storms to secure fetal hematopoiesis and survival.","authors":"Wen Wei, Xueqin Gao, Jiawei Qian, Lei Li, Chen Zhao, Li Xu, Yanfei Zhu, Zhenzhen Liu, Nengrong Liu, Xueqing Wang, Zhicong Jin, Bowen Liu, Lan Xu, Jin Dong, Suping Zhang, Jiarong Wang, Yumu Zhang, Yao Yu, Zhanjun Yan, Yanjun Yang, Jie Lu, Yixuan Fang, Na Yuan, Jianrong Wang","doi":"10.1172/JCI177375","DOIUrl":"https://doi.org/10.1172/JCI177375","url":null,"abstract":"<p><p>Proper control of inflammatory responses is essential for embryonic development, but the underlying mechanism is poorly understood. Here, we show that under physiological conditions, inactivation of ISG15, an inflammation amplifier, is associated with the interaction of Beclin 1 (Becn1), via its ECD domain, with STAT3 in the major fetal hematopoietic organ of mice. Conditional loss of Becn1 caused sequential dysfunction and exhaustion of fetal liver hematopoietic stem cells, leading to lethal inflammatory cell-biased hematopoiesis in the fetus. Molecularly, the absence of Becn1 resulted in the release of STAT3 from Becn1 tethering and subsequent phosphorylation and translocation to the nucleus, which in turn directly activated the transcription of ISG15 in fetal liver hematopoietic cells, coupled with increased ISGylation and production of inflammatory cytokines, whereas inactivating STAT3 reduced ISG15 transcription and inflammation but improved hematopoiesis potential, and further silencing ISG15 mitigated the above collapse in the Becn1 null hematopoietic lineage. The Becn1-STAT3-ISG15 axis remains functional in autophagy-disrupted fetal hematopoietic organs. These results suggest that Becn1, in an autophagy-independent manner, secures hematopoiesis and survival of the fetus by directly inhibiting STAT3-ISG15 activation to prevent cytokine storms. Our findings highlight a previously undocumented role of Becn1 in governing ISG15 to safeguard the fetus.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":" ","pages":""},"PeriodicalIF":13.3,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142728897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elizabeth E McCarthy, Steven Yu, Noah Perlmutter, Yuka Nakao, Ryota Naito, Charles Lin, Vivienne Riekher, Joe DeRisi, Chun Jimmie Ye, Arthur Weiss, Judith F Ashouri
{"title":"Endogenous antigens shape the transcriptome and TCR repertoire in an autoimmune arthritis model.","authors":"Elizabeth E McCarthy, Steven Yu, Noah Perlmutter, Yuka Nakao, Ryota Naito, Charles Lin, Vivienne Riekher, Joe DeRisi, Chun Jimmie Ye, Arthur Weiss, Judith F Ashouri","doi":"10.1172/JCI174647","DOIUrl":"https://doi.org/10.1172/JCI174647","url":null,"abstract":"<p><p>The development of pathogenic autoreactive CD4+ T cells, particularly in the context of impaired signaling, remains poorly understood. Unraveling how defective signaling pathways contribute to their activation and persistence is crucial for identifying new therapeutic targets. We profiled a highly arthritogenic subset of naïve CD4+ T cells using bulk and single-cell RNA and TCR sequencing from SKG mice, which develop CD4+ T cell mediated autoimmune arthritis driven by a hypomorphic mutation in Zap70-a key TCR signaling kinase. Despite impaired signaling, these cells exhibit heightened expression of T cell activation and cytokine signaling genes, but diminished expression of a subset of tolerogenic markers (Izumo1r, Tnfrsf9, Cd5, S100a11) compared to wild-type cells. The arthritogenic cells show an enrichment for TCR variable beta (Vβ) chains targeting superantigens from the endogenous mouse mammary tumor virus (MMTV) but exhibit diminished induction of tolerogenic markers following peripheral antigen encounter, contrasting with the robust induction of negative regulators seen in wild-type cells. In arthritic joints, cells expressing superantigen-reactive Vβs expand alongside detectable MMTV proviruses. Antiretroviral treatment and superantigen-reactive T cell depletion curtail SKG arthritis, suggesting that endogenous retroviruses disrupt peripheral tolerance and promote the activation and differentiation of self-reactive CD4+ T cells into pathogenic effector cells.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":" ","pages":""},"PeriodicalIF":13.3,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142728916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Naveenchandra Suryadevara, Nurgun Kose, Sandhya Bangaru, Elad Binshtein, Jennifer Munt, David R Martinez, Alexandra Schäfer, Luke Myers, Trevor D Scobey, Robert H Carnahan, Andrew B Ward, Ralph S Baric, James E Crowe
{"title":"Structural characterization of human monoclonal antibodies targeting uncommon antigenic sites on spike glycoprotein of SARS-CoV.","authors":"Naveenchandra Suryadevara, Nurgun Kose, Sandhya Bangaru, Elad Binshtein, Jennifer Munt, David R Martinez, Alexandra Schäfer, Luke Myers, Trevor D Scobey, Robert H Carnahan, Andrew B Ward, Ralph S Baric, James E Crowe","doi":"10.1172/JCI178880","DOIUrl":"https://doi.org/10.1172/JCI178880","url":null,"abstract":"<p><p>The function of the spike protein N terminal domain (NTD) in coronavirus (CoV) infections is poorly understood. However, some rare antibodies that target the SARS-CoV-2 NTD potently neutralize the virus. This finding suggests the NTD may contribute in part to protective immunity. Pan-sarbecovirus antibodies are desirable for broad protection, but the NTD region of SARS-CoV and SARS-CoV-2 exhibit a high level of sequence divergence, and therefore, cross-reactive NTD-specific antibodies are unexpected, and there is no structure of a SARS-CoV NTD-specific antibody in complex with NTD. Here we report a monoclonal antibody COV1-65 encoded by the IGHV1-69 gene that recognizes the NTD of SARS-CoV S protein. A prophylaxis study showed the MAb COV1-65 prevented disease when administered before SARS-CoV challenge of BALB/c mice, an effect that requires intact Fc effector functions for optimal protection in vivo. The footprint on the S protein of COV1-65 is near to functional components of the S2 fusion machinery, and the selection of COV1-65 escape mutant viruses identified critical residues Y886H and Q974H, which likely affect the epitope through allosteric effects. Structural features of the mAb COV1-65-SARS-CoV antigen interaction suggest critical antigenic determinants that should be considered in the rational design of sarbecovirus vaccine candidates.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":" ","pages":""},"PeriodicalIF":13.3,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142716356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chloe J Peach, Raquel Tonello, Elisa Damo, Kimberly Gomez, Aida Calderon-Rivera, Renato Bruni, Harsh Bansia, Laura Maile, Ana-Marie Manu, Hyunggu Hahn, Alex Rb Thomsen, Brian L Schmidt, Steve Davidson, Amedee des Georges, Rajesh Khanna, Nigel W Bunnett
{"title":"NEUROPILIN-1 INHIBITION SUPPRESSES NERVE-GROWTH FACTOR SIGNALING AND NOCICEPTION IN PAIN MODELS.","authors":"Chloe J Peach, Raquel Tonello, Elisa Damo, Kimberly Gomez, Aida Calderon-Rivera, Renato Bruni, Harsh Bansia, Laura Maile, Ana-Marie Manu, Hyunggu Hahn, Alex Rb Thomsen, Brian L Schmidt, Steve Davidson, Amedee des Georges, Rajesh Khanna, Nigel W Bunnett","doi":"10.1172/JCI183873","DOIUrl":"https://doi.org/10.1172/JCI183873","url":null,"abstract":"<p><p>Nerve growth factor (NGF) monoclonal antibodies inhibit chronic pain yet failed to gain approval due to worsened joint damage in osteoarthritis patients. We report that neuropilin-1 (NRP1) is a co-receptor for NGF and tropomyosin-related kinase A (TrkA) pain signaling. NRP1 was coexpressed with TrkA in human and mouse nociceptors. NRP1 inhibitors suppressed NGF-stimulated excitation of human and mouse nociceptors and NGF-evoked nociception in mice. NRP1 knockdown inhibited NGF/TrkA signaling, whereas NRP1 overexpression enhanced signaling. NGF bound NRP1 with high affinity and interacted with and chaperoned TrkA from the biosynthetic pathway to the plasma membrane and endosomes, enhancing TrkA signaling. Molecular modeling suggested that C-terminal R/KXXR/K NGF motif interacts with extracellular \"b\" NRP1 domain within a plasma membrane NGF/TrkA/NRP1 of 2:2:2 stoichiometry. G Alpha Interacting Protein C-terminus 1 (GIPC1), which scaffolds NRP1 and TrkA to myosin VI, colocalized in nociceptors with NRP1/TrkA. GIPC1 knockdown abrogated NGF-evoked excitation of nociceptors and pain-like behavior. Thus, NRP1 is a nociceptor-enriched co-receptor that facilitates NGF/TrkA pain signaling. NRP binds NGF and chaperones TrkA to the plasma membrane and signaling endosomes via GIPC1 adaptor. NRP1 and GIPC1 antagonism in nociceptors offers a long-awaited non-opioid alternative to systemic antibody NGF sequestration for the treatment of chronic pain.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":" ","pages":""},"PeriodicalIF":13.3,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142728987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alaa Babeer, Yuan Liu, Zhi Ren, Zhenting Xiang, Min Jun Oh, Nil Kanatha Pandey, Aurea Simon-Soro, Ranran Huang, Bekir Karabucak, David P Cormode, Chider Chen, Hyun Koo
{"title":"Ferumoxytol nanozymes effectively target chronic biofilm infections in apical periodontitis.","authors":"Alaa Babeer, Yuan Liu, Zhi Ren, Zhenting Xiang, Min Jun Oh, Nil Kanatha Pandey, Aurea Simon-Soro, Ranran Huang, Bekir Karabucak, David P Cormode, Chider Chen, Hyun Koo","doi":"10.1172/JCI183576","DOIUrl":"https://doi.org/10.1172/JCI183576","url":null,"abstract":"<p><p>Bacterial biofilms are pervasive and recalcitrant to current antimicrobials, causing numerous infections. Iron oxide-nanozymes, including an FDA-approved formulation (ferumoxytol, FMX), show potential against biofilm infections via catalytic activation of hydrogen peroxide (H2O2). However, clinical evidence on its efficacy and therapeutic mechanisms is lacking. Here, we investigate whether FMX-nanozymes can treat chronic biofilm infections and compare their bioactivity to gold-standard sodium hypochlorite (NaOCl), a potent but caustic disinfectant. Clinical performance was assessed in patients with apical periodontitis, an intractable endodontic infection affecting half of the global adult population. Data show robust antibiofilm activity by a single application of FMX with H2O2 achieving results comparable to NaOCl without adverse effects. FMX binds efficiently to bacterial pathogens Enterococcus faecalis and Fusobacterium nucleatum and remains catalytically active without being affected by dental tissues. This allows for effective eradication of endodontic biofilms via on-site free-radical generation without inducing cytotoxicity. Unexpectedly, FMX promotes growth of stem cells of apical papilla (SCAP), with transcriptomic analyses revealing upregulation of proliferation-associated pathways and downregulation of cell-cycle suppressor genes. Notably, FMX activates SCAP pluripotency and WNT/NOTCH signaling that induces its osteogenic capacity. Together, we show FMX nanozymes are clinically effective against severe chronic biofilm infection with pathogen targeting and unique stem cell-stimulatory properties, offering a regenerative approach to antimicrobial therapy.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":" ","pages":""},"PeriodicalIF":13.3,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142728982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ratnakar Tiwari, Rajni Sharma, Ganeshkumar Rajendran, Gabriella S Borkowski, Si Young An, Michael Schonfeld, James O'Sullivan, Matthew J Schipma, Yalu Zhou, Guillaume Courbon, Benjamin R Thomson, Valentin David, Susan E Quaggin, Edward B Thorp, Navdeep S Chandel, Pinelopi P Kapitsinou
{"title":"Post-ischemic inactivation of HIF Prolyl Hydroxylases in endothelium promotes maladaptive kidney repair by inducing glycolysis.","authors":"Ratnakar Tiwari, Rajni Sharma, Ganeshkumar Rajendran, Gabriella S Borkowski, Si Young An, Michael Schonfeld, James O'Sullivan, Matthew J Schipma, Yalu Zhou, Guillaume Courbon, Benjamin R Thomson, Valentin David, Susan E Quaggin, Edward B Thorp, Navdeep S Chandel, Pinelopi P Kapitsinou","doi":"10.1172/JCI176207","DOIUrl":"10.1172/JCI176207","url":null,"abstract":"<p><p>Ischemic acute kidney injury (AKI) is common in hospitalized patients and increases the risk for chronic kidney disease (CKD). Impaired endothelial cell (EC) functions are thought to contribute in AKI to CKD transition, but the underlying mechanisms remain unclear. Here, we identify a critical role for endothelial oxygen sensing prolyl hydroxylase domain (PHD) enzymes 1-3 in regulating post-ischemic kidney repair. In renal endothelium, we observed compartment-specific differences in the expression of the three PHD isoforms in both mice and humans. Post-ischemic concurrent inactivation of endothelial PHD1, PHD2, and PHD3 but not PHD2 alone promoted maladaptive kidney repair characterized by exacerbated tissue injury, fibrosis, and inflammation. Single-cell RNA-seq analysis of the post-ischemic endothelial PHD1, PHD2 and PHD3 deficient (PHDTiEC) kidney revealed an endothelial hypoxia and glycolysis related gene signature, also observed in human kidneys with severe AKI. This metabolic program was coupled to upregulation of the SLC16A3 gene encoding the lactate exporter monocarboxylate transporter 4 (MCT4). Strikingly, treatment with the MCT4 inhibitor syrosingopine restored adaptive kidney repair in PHDTiEC mice. Mechanistically, MCT4 inhibition suppressed pro-inflammatory EC activation reducing monocyte-endothelial cell interaction. Our findings suggest avenues for halting AKI to CKD transition based on selectively targeting the endothelial hypoxia-driven glycolysis/MCT4 axis.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":" ","pages":""},"PeriodicalIF":13.3,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142769413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}