Journal of chemical technology and biotechnology最新文献

筛选
英文 中文
Enhanced diclofenac adsorption and degradation using iron-loaded modified spent bleaching earth carbon in the presence of clofibric acid: mechanistic insights and toxicity assessment 在氯仿酸存在下使用铁负载改性漂白土碳增强双氯芬酸的吸附和降解:机理认识和毒性评估
IF 2.8 4区 生物学
Journal of chemical technology and biotechnology Pub Date : 2024-08-07 DOI: 10.1002/jctb.7723
Liwen Zhang, Xue Song, Jie Zhang, Yue Chen, Yongde Liu, Jihong Zhao, Fanbao Deng, Guihua Yan
{"title":"Enhanced diclofenac adsorption and degradation using iron-loaded modified spent bleaching earth carbon in the presence of clofibric acid: mechanistic insights and toxicity assessment","authors":"Liwen Zhang,&nbsp;Xue Song,&nbsp;Jie Zhang,&nbsp;Yue Chen,&nbsp;Yongde Liu,&nbsp;Jihong Zhao,&nbsp;Fanbao Deng,&nbsp;Guihua Yan","doi":"10.1002/jctb.7723","DOIUrl":"10.1002/jctb.7723","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> BACKGROUND</h3>\u0000 \u0000 <p>The presence of pharmaceutical active substances such as diclofenac (DCF) and clofibric acid (CA) in aquatic environments poses significant ecological threats. Existing treatments have not fully explored the impact of CA on DCF removal efficiency. This research introduces nZVI/CTAB-SBE@C, a novel adsorbent developed from industrial spent bleaching earth (SBE), modified with cetyltrimethylammonium bromide (CTAB) and nano zero-valent iron (nZVI), enhancing both adsorption and degradation of DCF and CA.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> RESULTS</h3>\u0000 \u0000 <p>This study investigated the impact of CA on the removal capabilities of nZVI/CTAB-SBE@C for DCF in a coexisting system. Systematic examinations were conducted on the effects of various parameters, including reaction time, dosage, temperature, actual wastewater, humic acid content and coexisting ions. Results indicated that the presence of CA significantly enhanced the DCF removal efficiency, achieving an optimal rate of 87.3% under conditions of reaction time 2 h, adsorbent dosage 5 g L<sup>−1</sup> and temperature 25 °C. Moreover, interactions between Al<sup>3+</sup> ions and the adsorbent matrix notably improved removal efficiencies for both DCF and CA. Analysis revealed that CA facilitated new degradation pathways for DCF, including hydroxylation and decarboxylation reactions. Additionally, the presence of CA reduced the toxicity of degradation intermediates, enhancing environmental safety compared to systems containing only DCF.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> CONCLUSION</h3>\u0000 \u0000 <p>This study effectively transforms industrial waste into the efficient nZVI/CTAB-SBE@C adsorbent. The presence of CA not only boosts DCF removal efficiency but also promotes its safer degradation, thereby reducing the ecological impact of contaminants. © 2024 Society of Chemical Industry (SCI).</p>\u0000 </section>\u0000 </div>","PeriodicalId":15335,"journal":{"name":"Journal of chemical technology and biotechnology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141946005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bidirectional extracellular electron transfers in Serratia marcescens and Stenotrophomonas sp. correlate to EPS and Cr(VI) removal in single-chamber bioelectrochemical systems 在单室生物电化学系统中,肉质沙雷氏菌和臭腺单胞菌的双向胞外电子转移与 EPS 和六价铬的去除相关联
IF 2.8 4区 生物学
Journal of chemical technology and biotechnology Pub Date : 2024-08-06 DOI: 10.1002/jctb.7724
Yiying Yan, Qiang Wang, Liping Huang, Xin Xing, Yong Shi, Miao Wang, Gianluca Li Puma
{"title":"Bidirectional extracellular electron transfers in Serratia marcescens and Stenotrophomonas sp. correlate to EPS and Cr(VI) removal in single-chamber bioelectrochemical systems","authors":"Yiying Yan,&nbsp;Qiang Wang,&nbsp;Liping Huang,&nbsp;Xin Xing,&nbsp;Yong Shi,&nbsp;Miao Wang,&nbsp;Gianluca Li Puma","doi":"10.1002/jctb.7724","DOIUrl":"10.1002/jctb.7724","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> BACKGROUND</h3>\u0000 \u0000 <p>Electrochemically active bacteria (EAB) capable of bidirectional extracellular electron transfer (EET), either outward or inward EET, largely control the efficiency of interactions and electrical communication between biofilm and electrode and, thus, control the performance of bioelectrochemical systems (BESs) for heavy metals removal. However, the behavior of such metallurgical EAB capable of bidirectional EET has yet to be investigated, and the role of extracellular polymeric substances (EPS) in these switchable EAB with bidirectional EET and in the presence of heavy metals remains unexplored in the single-chamber BESs treating heavy metal-based wastewaters that are limited by carbon/electron sources or electron acceptors.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> RESULTS</h3>\u0000 \u0000 <p>The biofilms of the Cr(VI)-tolerant EAB <i>Stenotrophomonas sp.</i> YS1 and <i>Serratia marcescens</i> Q1 exhibited bidirectional EET metabolizing either organic (acetate) or inorganic (HCO<sub>3</sub><sup>−</sup>) species with simultaneous removal of Cr(VI) in single-chamber BESs. Q1 inward EET uptake of electrons was more efficient than that of YS1 (165 μA <i>vs.</i> 118 μA); meanwhile, YS1 outward EET was more efficient than Q1 (8.0 μA <i>vs.</i> 4.7–5.2 μA). The adaptive electrochemically-tunable EPS in both biofilm strains was regulated by the direction of the EET (inward or outward) in the presence of Cr(VI) and circuital current.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> CONCLUSION</h3>\u0000 \u0000 <p>This study demonstrates the switching properties of EAB, such as <i>Stenotrophomonas sp.</i> or <i>S. marcescens,</i> that are capable of bidirectional EET to or from the electrodes, and it displays the regulation of such responses with the amount and compositional diversity of the biofilms’ EPS, giving a comprehensive appreciation of tunable EPS for Cr(VI)-wastewater treatment in single-chamber BESs. © 2024 Society of Chemical Industry (SCI).</p>\u0000 </section>\u0000 </div>","PeriodicalId":15335,"journal":{"name":"Journal of chemical technology and biotechnology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141946007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leveraging the dynamics of microalgal CO2 capture to estimate the maximum inherent photosynthetic potential 利用微藻捕获二氧化碳的动态来估算固有光合作用的最大潜力
IF 2.8 4区 生物学
Journal of chemical technology and biotechnology Pub Date : 2024-08-05 DOI: 10.1002/jctb.7720
Satyanarayana Reddy Battula, Ramkrishna Sen
{"title":"Leveraging the dynamics of microalgal CO2 capture to estimate the maximum inherent photosynthetic potential","authors":"Satyanarayana Reddy Battula,&nbsp;Ramkrishna Sen","doi":"10.1002/jctb.7720","DOIUrl":"10.1002/jctb.7720","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> BACKGROUND</h3>\u0000 \u0000 <p>Natural photosynthesis, utilizing intelligent molecular machinery to harness sunlight, stands as the benchmark for efficient energy generation. Despite its high quantum efficiency compared to synthetic methods, challenges persist due to dynamic nutritional and light requirements in plant, microalgae, and cyanobacteria-driven processes. Reported microalgae CO<sub>2</sub> uptake rates rely on biomass dry cell weight measurement after certain incubation period and systematic study of required CO<sub>2</sub> concentrations for optimal photobioreactor operation remaining unexplored. This research is thus aimed at evaluating the critical dissolved CO<sub>2</sub> (C<sub>crit</sub> ∙ CO<sub>2</sub>) concentration and specific CO<sub>2</sub> uptake rates (SCUR) of <i>Chlorella minutissima</i> (CM) culture in the presence of surplus light and other nutrients by online monitoring and measuring the dynamic CO<sub>2</sub> uptake rates which will help in maintaining the optimal rate of CO<sub>2</sub> delivery for continuous cultivation of microalgae while minimizing the escape of CO<sub>2</sub>.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> RESULTS</h3>\u0000 \u0000 <p>Dissolved C<sub>crit</sub> ∙ CO<sub>2</sub> was determined to be in the range of 16–20 mg/L, and the maximum SCUR in BBM (Bold Basal Medium) was found to be 0.73 mg CO<sub>2</sub> (mg dcw ∙ h)<sup>−1</sup>. Interestingly, this SCUR value is nearly three times greater than that of the most efficient <i>in vitro</i> artificial photosynthetic novel pathway reported so far.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> CONCLUSION</h3>\u0000 \u0000 <p>From the calculated SCUR values, it may be noted that 9.6 g of biomass can be obtained from 1 g of microalgal inoculum in a day, thereby setting a benchmark for the scientists working in the areas of bioprocess engineering, synthetic biology, and metabolic engineering to comply. © 2024 Society of Chemical Industry (SCI).</p>\u0000 </section>\u0000 </div>","PeriodicalId":15335,"journal":{"name":"Journal of chemical technology and biotechnology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141946009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Removal of Escherichia coli and Enterococcus faecalis from synthetic wastewater using thermally treated palygorskite as a bacterial adsorbent in fixed bed reactors 在固定床反应器中使用经热处理的堇青石作为细菌吸附剂去除合成废水中的大肠杆菌和粪肠球菌
IF 2.8 4区 生物学
Journal of chemical technology and biotechnology Pub Date : 2024-08-02 DOI: 10.1002/jctb.7722
Aristodimos Mavrikos, Athanasia.G Tekerlekopoulou, Danae Venieri, Christina.V Lazaratou, Dimitris Vayenas, Dimitris Papoulis
{"title":"Removal of Escherichia coli and Enterococcus faecalis from synthetic wastewater using thermally treated palygorskite as a bacterial adsorbent in fixed bed reactors","authors":"Aristodimos Mavrikos,&nbsp;Athanasia.G Tekerlekopoulou,&nbsp;Danae Venieri,&nbsp;Christina.V Lazaratou,&nbsp;Dimitris Vayenas,&nbsp;Dimitris Papoulis","doi":"10.1002/jctb.7722","DOIUrl":"10.1002/jctb.7722","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> BACKGROUND</h3>\u0000 \u0000 <p>In pursuit of innovative wastewater treatment solutions, this study investigates the use of thermally treated palygorskite (TP) as an adsorbent to remove <i>Escherichia coli</i> and <i>Enterococcus faecalis</i> from synthetic wastewater. The goal is to explore a natural alternative to chlorine-based disinfectants by utilizing TP's antimicrobial properties. Columns were packed with two granulometries (G1: 0.25–0.6 mm; G2: 1.40–2.36 mm) of TP and arranged in three different configurations (CA1, CA2 and CA3) to assess their bacterial removal efficiency, kinetic behavior and potential for reuse after dry heat sterilization.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> RESULTS</h3>\u0000 \u0000 <p>The CA3 column configuration, with its multilayer arrangement of TP, achieved the highest bacterial removal efficiency, reaching 99.1% for <i>E. coli</i> and 98.1% for <i>E. faecalis</i>. Kinetic experiments revealed that most bacterial adsorption occurred within the first 3 min, with <i>E. coli</i> requiring up to 10 min to reach maximum removal. TP's antibacterial effectiveness remained above 90% after two reuses. Additionally, dry heat sterilization allowed for repeated use of TP, showing stable removal efficiencies for <i>E. faecalis</i> and a slight decline for <i>E. coli</i> with each successive reuse.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> CONCLUSIONS</h3>\u0000 \u0000 <p>TP demonstrates significant potential as an adsorbent for wastewater disinfection, particularly in the CA3 multilayer configuration. Its rapid adsorption kinetics and resilience to heat sterilization underscore its reusability, making it a viable natural alternative to chemical disinfectants. Further research should focus on scaling this method to real wastewater treatment applications to validate its functionality in real-world conditions. © 2024 Society of Chemical Industry (SCI).</p>\u0000 </section>\u0000 </div>","PeriodicalId":15335,"journal":{"name":"Journal of chemical technology and biotechnology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141884037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Formic and lactic acids from the conversion of xylose with the use of modified clinoptilolite by sonication 利用改性克林沸石超声转化木糖产生的甲酸和乳酸
IF 2.8 4区 生物学
Journal of chemical technology and biotechnology Pub Date : 2024-08-02 DOI: 10.1002/jctb.7721
Natalia Sobuś, Magdalena Król
{"title":"Formic and lactic acids from the conversion of xylose with the use of modified clinoptilolite by sonication","authors":"Natalia Sobuś,&nbsp;Magdalena Król","doi":"10.1002/jctb.7721","DOIUrl":"10.1002/jctb.7721","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> BACKGROUND</h3>\u0000 \u0000 <p>A material of natural origin, clinoptilolite, was modified with selected metals in order to obtain a catalyst for the conversion of xylose – the main component of the hemicellulose fraction present in lignocellulosic biomass – to selected carboxylic acids.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> RESULTS</h3>\u0000 \u0000 <p>The starting material without modification (0-parent), the hydrogen form (0-hydrogen) of zeolite and zeolite after hierarchization with hydrochloric acid (0-dealuminated) were used. Iron, copper and cobalt ions were introduced as active centers using the sonication technique. The catalytic process was carried out in a pressure autoclave for 2 h at a temperature of 220 °C. Compounds such as formic acid with a yield of 91% (0-parent) and lactic acid with a yield of 66.1% (Fe-hydrogen) were obtained.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>The catalytic processes carried out using xylose lead to the obtaining of a mixture of carboxylic acids: lactic acid, pyruvic acid and formic acid. An important role here is played by the presence of iron as an active site, which leads to the transformation of xylose into lactic acid by dehydration, and the presence of Lewis and Brønsted active sites. In the case of formic acid, which has never been reported in publications on a similar topic, the starting zeolite without modification contributed to its preparation. It is possible that the content of alkali metals contributed to its preparation along with the coupling of the oxidation reaction of the intermediate product, because of the presence of small amounts of iron, which are present in the natural material. © 2024 Society of Chemical Industry (SCI).</p>\u0000 </section>\u0000 </div>","PeriodicalId":15335,"journal":{"name":"Journal of chemical technology and biotechnology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141884038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prediction models to control final control elements for neutralization process in chemical industries 控制化学工业中和过程最终控制要素的预测模型
IF 2.8 4区 生物学
Journal of chemical technology and biotechnology Pub Date : 2024-08-02 DOI: 10.1002/jctb.7704
Y Dharshan, D Devasena, K Srinivasan
{"title":"Prediction models to control final control elements for neutralization process in chemical industries","authors":"Y Dharshan,&nbsp;D Devasena,&nbsp;K Srinivasan","doi":"10.1002/jctb.7704","DOIUrl":"10.1002/jctb.7704","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> BACKGROUND</h3>\u0000 \u0000 <p>Industrialization continues to increase in the 21st century, as industries start moving towards automation. Manufacturing of a component/item requires a lot of resources and energy. Usage of water in industries has increased in recent years, as it is used as both a resource and an energy generating source. Neutralization of a processed liquid is carried out by addition of solution through final control elements and most industries are utilizing pneumatic-based control valves, which have a disadvantage in the regulation of additives.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> RESULTS</h3>\u0000 \u0000 <p>A motorized valve system is introduced, which is compared with the pneumatic system in terms of their performance. The proposed system is implemented with different controllers such as proportional–integral controller tuned using linear matrix inequalities, modified internal model controller, model predictive controller and nonlinear autoregressive (NAR) model, where the final control elements are tested for pH neutralization. On implementation of the proposed system the NAR model has proven to be better under the motorized control valve system for the neutralization process, with a peak value of 7.08 (pH), settling time of 75.16 s, rise time of 5.96 s, maximum overshoot of 10.1%, slew rate of 0.21 per second, integral square error of 0.95, integral absolute error of 0.48 and integral time absolute error of 1.88.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> CONCLUSION</h3>\u0000 \u0000 <p>Based on the results obtained it is observed that the NAR controller utilized with motorized control valve has better functionality in neutralizing a solution. © 2024 Society of Chemical Industry (SCI).</p>\u0000 </section>\u0000 </div>","PeriodicalId":15335,"journal":{"name":"Journal of chemical technology and biotechnology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141884036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding the conversion of nitrogen compounds during ammonia electrooxidation: effect of current density, chloride concentration and pH on nitrate formation 了解氨电解氧化过程中氮化合物的转化:电流密度、氯化物浓度和 pH 值对硝酸盐形成的影响
IF 2.8 4区 生物学
Journal of chemical technology and biotechnology Pub Date : 2024-08-01 DOI: 10.1002/jctb.7715
Neanderson Galvão, Achilles Junqueira Bourdot Dutra, João Paulo Bassin
{"title":"Understanding the conversion of nitrogen compounds during ammonia electrooxidation: effect of current density, chloride concentration and pH on nitrate formation","authors":"Neanderson Galvão,&nbsp;Achilles Junqueira Bourdot Dutra,&nbsp;João Paulo Bassin","doi":"10.1002/jctb.7715","DOIUrl":"10.1002/jctb.7715","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> BACKGROUND</h3>\u0000 \u0000 <p>Ammonia removal from wastewater by electrooxidation (EO) is an interesting approach because of its efficiency and easy maintenance and operation. In this process, ammonia is oxidized to nitrate or nitrogen gas. Ammonia conversion to the latter is desirable to remove nitrogen from the liquid; however, the influence of several operating parameters on nitrate generation has not been systematically evaluated. Therefore, this work aimed to investigate the effect of current density (200–800 A m<sup>−2</sup>), chloride concentration (0–10 000 mg L) and initial pH (5–9) on the electrooxidation of an ammonia-containing solution and the associated generation of nitrate. For this purpose, a laboratory-scale electrochemical reactor containing two Ti/RuO<sub>2</sub> electrodes was used.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> RESULTS</h3>\u0000 \u0000 <p>The results indicated high ammonia removal efficiency – 98% within 150 min at 800 A m<sup>−2</sup> and 97% within 240 min at 500 A m<sup>−2</sup> – generating around 70 and 102 mg <span></span><math>\u0000 <mrow>\u0000 <msubsup>\u0000 <mi>NO</mi>\u0000 <mn>3</mn>\u0000 <mo>−</mo>\u0000 </msubsup>\u0000 </mrow></math>-N L<sup>−1</sup> under these conditions, respectively. Increasing the chloride concentration from 5000 to 7500 mg L<sup>−1</sup> reduces the electrolysis time needed to remove all ammonia from 180 to 150 min. However, with increasing initial chloride concentration, the amount of nitrate generated rose from 69.5 to 135.9 mg N L<sup>−1</sup>. On the other hand, in the test without chloride, nitrate generation was considerably lower (0–0.61 mg  L<sup>−1</sup>).</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> CONCLUSION</h3>\u0000 \u0000 <p>The higher the current density applied, the greater the ammonia removal by EO. Although current density influenced the ammonia oxidation rates, it did not directly affect nitrate formation. The lower the concentration of ammonia in the solution, the more significant was the fraction of nitrate generated. Most of the inlet ammonia was oxidized to nitrogen gas, nitrite was rapidly oxidized to nitrate and higher chloride concentrations enhanced ammonia oxidation. © 2024 Society of Chemical Industry (SCI).</p>\u0000 </section>\u0000 </div>","PeriodicalId":15335,"journal":{"name":"Journal of chemical technology and biotechnology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141884039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization of crude glycerol purification from grease trap waste biodiesel production: exploring the synergistic effect of mixed extraction alcohols on enhanced glycerol purity 从隔油池废弃物生物柴油生产中优化粗甘油提纯:探索混合提取醇对提高甘油纯度的协同效应
IF 2.8 4区 生物学
Journal of chemical technology and biotechnology Pub Date : 2024-07-30 DOI: 10.1002/jctb.7718
Akram Ali Nasser Mansoor Al-Haimi, Wen Luo, Junying Fu, Shunni Zhu, Fatma Yehia, Zhongming Wang
{"title":"Optimization of crude glycerol purification from grease trap waste biodiesel production: exploring the synergistic effect of mixed extraction alcohols on enhanced glycerol purity","authors":"Akram Ali Nasser Mansoor Al-Haimi,&nbsp;Wen Luo,&nbsp;Junying Fu,&nbsp;Shunni Zhu,&nbsp;Fatma Yehia,&nbsp;Zhongming Wang","doi":"10.1002/jctb.7718","DOIUrl":"10.1002/jctb.7718","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> BACKGROUND</h3>\u0000 \u0000 <p>The purification of crude glycerol, a byproduct of biodiesel production and grease trap waste, is essential for its utilization in high-value applications. Achieving exceptionally pure glycerol without relying on energy-intensive vacuum distillation during transesterification is of substantial economic interest.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> RESULTS</h3>\u0000 \u0000 <p>This investigation focuses on crafting a purification process involving chemical treatment (neutralization), adsorption and extraction. The assessment of the neutralization process using sodium hydroxide (NaOH) and potassium hydroxide (KOH) revealed their comparative efficacy. Activated carbon adsorption was used to reduce coloration in crude glycerol, with weights set at 4 and 8 wt%. Efficient salt extraction from crude glycerol was explored using solvents such as methanol, ethanol and isopropyl alcohol in varying mass ratios to crude glycerol (1:1 and 2:1). The study also examined the synergistic effects and impact of mixing alcohol solvents. Optimal conditions for achieving high purity (92.44%) were identified as the combination of KOH, 8 wt% activated carbon and a 2:1 ratio of a mixture of the three alcohols.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> CONCLUSION</h3>\u0000 \u0000 <p>The combined effects of employing a mixture of alcohols significantly enhance the extraction process, resulting in the efficient and successful purification of glycerol. These outcomes offer valuable insights into improving the extraction process in industrial settings, leading to the production of high-quality glycerol products. © 2024 Society of Chemical Industry (SCI).</p>\u0000 </section>\u0000 </div>","PeriodicalId":15335,"journal":{"name":"Journal of chemical technology and biotechnology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141872986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Facile Design of Continuous Periodic Countercurrent, dual-flow, and capture SMB adsorptive processes 连续周期逆流、双流和捕获 SMB 吸附工艺的简便设计
IF 2.8 4区 生物学
Journal of chemical technology and biotechnology Pub Date : 2024-07-28 DOI: 10.1002/jctb.7716
Giorgio Carta
{"title":"Facile Design of Continuous Periodic Countercurrent, dual-flow, and capture SMB adsorptive processes","authors":"Giorgio Carta","doi":"10.1002/jctb.7716","DOIUrl":"10.1002/jctb.7716","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> BACKGROUND</h3>\u0000 \u0000 <p>Chromatographic capture is a critical step in the manufacture of protein-based therapeutics and often dominates the overall downstream processing cost. Multicolumn systems as well as systems where the load flow rate varies over time can be employed to improve productivity and reduce the consumption of buffers and other process chemicals by enhancing utilization of the binding capacity. This work addresses the design of such systems under mass transfer control conditions using a mechanistic model.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> RESULTS</h3>\u0000 \u0000 <p>Generalized, dimensionless charts and interpolating functions developed based on a mechanistic model are provided to predict the operating conditions and performance attributes of periodic countercurrent, dual-flow, and Capture SMB systems for continuous capture with adsorption columns. The underlying model is based on the Langmuir isotherm and on the assumption that mass transfer is controlling. The results cover the ranges typically encountered in the capture of biopharmaceuticals with selective adsorbent particles and can be conveniently used for practical estimations without having to resort to the numerical solution of the model equations. Illustrative examples are provided and compare favorably with previously published results.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> CONCLUSIONS</h3>\u0000 \u0000 <p>The results of this work provide the means to rapidly design periodic countercurrent, dual-flow capture systems, and capture SMB units and to assess their relative advantages under varying operating conditions circumventing the need to perform computationally intensive simulations. © 2024 The Author(s). <i>Journal of Chemical Technology and Biotechnology</i> published by John Wiley &amp; Sons Ltd on behalf of Society of Chemical Industry (SCI).</p>\u0000 </section>\u0000 </div>","PeriodicalId":15335,"journal":{"name":"Journal of chemical technology and biotechnology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jctb.7716","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141868984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microwave-assisted synthesis of 1,4-disubstituted 1,2,3-triazole derivatives utilizing NiO/Cu2O nano-photocatalyst 利用 NiO/Cu2O 纳米光催化剂微波辅助合成 1,4-二取代的 1,2,3- 三唑衍生物
IF 2.8 4区 生物学
Journal of chemical technology and biotechnology Pub Date : 2024-07-26 DOI: 10.1002/jctb.7719
Yasser A Attia, Yasser MA Mohamed
{"title":"Microwave-assisted synthesis of 1,4-disubstituted 1,2,3-triazole derivatives utilizing NiO/Cu2O nano-photocatalyst","authors":"Yasser A Attia,&nbsp;Yasser MA Mohamed","doi":"10.1002/jctb.7719","DOIUrl":"10.1002/jctb.7719","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> BACKGROUND</h3>\u0000 \u0000 <p>The main characteristic features of nickel–copper-catalyzed azide–alkyne click (Ni-CuAAC) reactions for production of 1,2,3-triazoles are regioselectivity and the reaction proceeding under mild conditions. The use of copper salts as catalysts often leads to challenges like contamination of the prepared triazoles. NiO/Cu<sub>2</sub>O nanocomposites (NCs) were utilized in Ni-CuAAC reactions as heterogeneous nanocatalysts to achieve the production of some 1,4-disubstituted 1,2,3-triazoles in high chemical yields under microwave irradiation.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> RESULTS</h3>\u0000 \u0000 <p>The preparation of NiO/Cu<sub>2</sub>O NCs was performed through the coprecipitation of NiO nanoparticles on Cu<sub>2</sub>O surface. The prepared catalyst was used for catalyzing a reaction between benzoyl azides and phenylacetylene under optimized reaction conditions. The NiO/Cu<sub>2</sub>O NCs exhibited high catalytic activity compared to Cu<sub>2</sub>O nanoparticles. In addition, by utilizing ethanol–water as the solvent system under microwave irradiation, higher yields and efficient product separation were observed.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> CONCLUSION</h3>\u0000 \u0000 <p>This study investigated the proficiency of NiO/Cu<sub>2</sub>O NCs as effective nanocatalysts for the selective synthesis of some 1,4-disubstituted 1,2,3-triazole derivatives. Employing heterogeneous nanoparticle catalysts, such as Cu<sub>2</sub>O and NiO/Cu<sub>2</sub>O, offers several advantages over homogeneous catalytic systems. These include easier catalyst separation and recovery, potential for catalyst reuse and the ability to fine-tune the catalytic properties by modulating the nanoparticle composition and structure. © 2024 Society of Chemical Industry (SCI).</p>\u0000 </section>\u0000 </div>","PeriodicalId":15335,"journal":{"name":"Journal of chemical technology and biotechnology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141777288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信