{"title":"Aging affects the mouse brain in a region-specific manner.","authors":"Ling Cai, Yueman Zhang, Yuxi Zhou, Xin Wang","doi":"10.1177/0271678X241289780","DOIUrl":"10.1177/0271678X241289780","url":null,"abstract":"<p><p>Aging-related cognitive decline is emerging as a health concern during the aging process of the global population. Hahn and colleagues found that glial aging was particularly accelerated in white matter compared to cortical regions. Specialized neuronal populations showed region-specific changes in gene expression. Acute dietary restriction triggers a reprogramming of genes associated with the circadian clock in glial cells, whereas injections of young mouse plasma selectively reverse age-related expression patterns. The discovery of region-specific aging could enhance our understanding of the aging process and offer new possibilities for innovative treatment strategies and interventions for cognitive impairments related to aging.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"373-375"},"PeriodicalIF":4.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563525/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142466522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A dangerous liaison: Spreading depolarization and tissue acidification in cerebral ischemia.","authors":"Eszter Farkas, Christine R Rose","doi":"10.1177/0271678X241289756","DOIUrl":"10.1177/0271678X241289756","url":null,"abstract":"<p><p>Brain pH is precisely regulated, and pH transients associated with activity are rapidly restored under physiological conditions. During ischemia, the brain's ability to buffer pH changes is rapidly depleted. Tissue oxygen deprivation causes a shift from aerobic to anaerobic metabolism and the accumulation of lactic acid and protons. Although the degree of tissue acidosis resulting from ischemia depends on the severity of the ischemia, spreading depolarization (SD) events emerge as central elements to determining ischemic tissue acidosis. A marked decrease in tissue pH during cerebral ischemia may exacerbate neuronal injury, which has become known as acidotoxicity, in analogy to excitotoxicity. The cellular pathways underlying acidotoxicity have recently been described in increasing detail. The molecular structure of acid or base carriers and acidosis-activated ion channels, the precise (dys)homeostatic conditions under which they are activated, and their possible role in severe ischemia have been addressed. The expanded understanding of acidotoxic mechanisms now provides an opportunity to reevaluate the contexts that lead to acidotoxic injury. Here, we review the specific cellular pathways of acidotoxicity and demonstrate that SD plays a central role in activating the molecular machinery leading to acid-induced damage. We propose that SD is a key contributor to acidotoxic injury in cerebral ischemia.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"201-218"},"PeriodicalIF":4.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142621036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microglia balances hypermyelination and demyelination in the brain.","authors":"Weijie Chen, Yueman Zhang, Peiying Li","doi":"10.1177/0271678X241273623","DOIUrl":"10.1177/0271678X241273623","url":null,"abstract":"<p><p>Myelin is crucial for neuron health and central nervous system (CNS) function. Recent research by McNamara <i>et al.</i> highlighted microglia's essential role in compacting the myelin sheath during development and their absence leads to aberrant oligodendrocyte clusters and subsequent cognitive impairment. The study revealed that the critical involvement of the TGFβ1-TGFβR1 axis in microglia-oligodendrocyte communication could influence the oligodendrocyte lipid metabolism and thereby regulate myelin integrity. Further exploration is needed to fully elucidate the dual impact of microglia on myelination, and interactions with other glial cells, holding promise for discovering new targets in myelin-related neurodegenerative and CNS disorders.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"376-378"},"PeriodicalIF":4.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11635792/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142813359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Oxygen extraction fraction change in M1-M6 brain regions of patients with unilateral or bilateral middle cerebral artery occlusion.","authors":"Yu Xiao, Zhenghua Liu, Xinghua Wan","doi":"10.1177/0271678X241276386","DOIUrl":"10.1177/0271678X241276386","url":null,"abstract":"<p><p>Cerebral blood flow (CBF) and oxygen extraction fraction (OEF) can be measured using arterial spin labeling (ASL) and quantitative susceptibility mapping (QSM) sequences, respectively. ASL and QSM sequences were performed on 13 healthy participants and 46 patients with unilateral or bilateral Middle cerebral artery (MCA) occlusion. M1-M3 and M4-M6 correspond to anterior, lateral, and posterior MCA territories within the insular ribbon and centrum semiovale, respectively. In patients with unilateral MCA occlusion, significant decreases in CBF were observed in the lesions in M1, M3, M5 and M6 regions, as well as in the contralateral M3 and M5 regions. The OEF of the lesion in the M1-M4 and M6 regions, and the contralateral M1-M3 regions were significantly higher. Additionally, the cerebral metabolic rate of oxygen (CMRO<sub>2</sub>) in the lesions of the M3 and M6 regions, and the contralateral M3 region, were significantly lower compared to the corresponding regions of healthy participants. For patients with bilateral MCA occlusion, the CMRO<sub>2</sub> in the left M5 region and the right M3 and M6 regions were significantly lower than that in the corresponding regions of healthy participants. In conclusion, abnormal hemodynamics occur in the contralateral hemisphere of patients with unilateral MCA occlusion.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"319-327"},"PeriodicalIF":4.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11572168/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142004368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anja Collazo, Hans-Georg Kuhn, Tobias Kurth, Marco Piccininni, Jessica L Rohmann
{"title":"Rethinking animal attrition in preclinical research: Expressing causal mechanisms of selection bias using directed acyclic graphs.","authors":"Anja Collazo, Hans-Georg Kuhn, Tobias Kurth, Marco Piccininni, Jessica L Rohmann","doi":"10.1177/0271678X241275760","DOIUrl":"10.1177/0271678X241275760","url":null,"abstract":"<p><p>Animal attrition in preclinical experiments can introduce bias in the estimation of causal treatment effects, as the treatment-outcome association in surviving animals may not represent the causal effect of interest. This can compromise the internal validity of the study despite randomization at the outset. Directed Acyclic Graphs (DAGs) are useful tools to transparently visualize assumptions about the causal structure underlying observed data. By illustrating relationships between relevant variables, DAGs enable the detection of even less intuitive biases, and can thereby inform strategies for their mitigation. In this study, we present an illustrative causal model for preclinical stroke research, in which animal attrition induces a specific type of selection bias (i.e., collider stratification bias) due to the interplay of animal welfare, initial disease severity and negative side effects of treatment. Even when the treatment had no causal effect, our simulations revealed substantial bias across different scenarios. We show how researchers can detect and potentially mitigate this bias in the analysis phase, even when only data from surviving animals are available, if knowledge of the underlying causal process that gave rise to the data is available. Collider stratification bias should be a concern in preclinical animal studies with severe side effects and high post-randomization attrition.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"340-351"},"PeriodicalIF":4.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11572016/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142004369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Miaowen Jiang, Fuzhi Cao, Qihan Zhang, Zhengfei Qi, Yuan Gao, Yang Zhang, Baoyin Song, Chuanjie Wu, Ming Li, Yongbo Xu, Xin Zhang, Yuan Wang, Ming Wei, Xunming Ji
{"title":"Model-predicted brain temperature computational imaging by multimodal noninvasive functional neuromonitoring of cerebral oxygen metabolism and hemodynamics: MRI-derived and clinical validation.","authors":"Miaowen Jiang, Fuzhi Cao, Qihan Zhang, Zhengfei Qi, Yuan Gao, Yang Zhang, Baoyin Song, Chuanjie Wu, Ming Li, Yongbo Xu, Xin Zhang, Yuan Wang, Ming Wei, Xunming Ji","doi":"10.1177/0271678X241270485","DOIUrl":"10.1177/0271678X241270485","url":null,"abstract":"<p><p>Brain temperature, a crucial yet under-researched neurophysiological parameter, is governed by the equilibrium between cerebral oxygen metabolism and hemodynamics. Therapeutic hypothermia has been demonstrated as an effective intervention for acute brain injuries, enhancing survival rates and prognosis. The success of this treatment hinges on the precise regulation of brain temperature. However, the absence of comprehensive brain temperature monitoring methods during therapy, combined with a limited understanding of human brain heat transmission mechanisms, significantly hampers the advancement of hypothermia-based neuroprotective therapies. Leveraging the principles of bioheat transfer and MRI technology, this study conducted quantitative analyses of brain heat transfer during mild hypothermia therapy. Utilizing MRI, we reconstructed brain structures, estimated cerebral blood flow and oxygen consumption parameters, and developed a brain temperature calculation model founded on bioheat transfer theory. Employing computational cerebral hemodynamic simulation analysis, we established an intracranial arterial fluid dynamics model to predict brain temperature variations across different therapeutic hypothermia modalities. We introduce a noninvasive, spatially resolved, and optimized mathematical bio-heat model that synergizes model-predicted and MRI-derived data for brain temperature prediction and imaging. Our findings reveal that the brain temperature images generated by our model reflect distinct spatial variations across individual participants, aligning with experimentally observed temperatures.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"275-291"},"PeriodicalIF":4.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11572106/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141916819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Khanum Ridler, Gaia Rizzo, Ethan S Burstein, Anton Forsberg Morén, Vladimir Stepanov, Christer Halldin, Eugenii A Rabiner
{"title":"Imaging the 5-HT<sub>2C</sub> receptor with PET: Evaluation of 5-HT<sub>2C</sub> and 5-HT<sub>2A</sub> affinity of pimavanserin in the primate brain.","authors":"Khanum Ridler, Gaia Rizzo, Ethan S Burstein, Anton Forsberg Morén, Vladimir Stepanov, Christer Halldin, Eugenii A Rabiner","doi":"10.1177/0271678X241276312","DOIUrl":"10.1177/0271678X241276312","url":null,"abstract":"<p><p>Two complimentary techniques were used to estimate occupancy of pimavanserin (a selective 5-HT<sub>2A/2C</sub> inverse agonist) to 5-HT<sub>2A</sub> and 5-HT<sub>2C</sub> receptors in non-human primate brains. One employed the 5-HT<sub>2A/2C</sub> selective radioligand [<sup>11</sup>C]CIMBI-36 combined with quantification of binding potentials in brain regions known to be enriched in 5-HT<sub>2A</sub> (cortex) or 5-HT<sub>2C</sub> (choroid plexus) receptors to estimate occupancy. Pimavanserin was 6-10 fold more potent displacing [<sup>11</sup>C]CIMBI-36 from cortex (ED<sub>50</sub> = 0.007 mg/kg; EC<sub>50</sub> = 0.6 ng/ml) than from choroid plexus (ED<sub>50</sub> =0.046 mg/kg; EC<sub>50</sub> = 6.0 ng/ml). The assignment of [<sup>11</sup>C]CIMBI-36 binding to 5-HT<sub>2A</sub> and 5-HT<sub>2C</sub> receptors by anatomical brain structure was confirmed using the 5-HT<sub>2A</sub> selective inverse agonist MDL 100,907 and the 5-HT<sub>2C</sub> selective antagonist SB 242584 to displace [<sup>11</sup>C]CIMBI-36. The second technique employed a novel, 5-HT<sub>2C</sub> selective tracer called [<sup>11</sup>C]AC1332. [<sup>11</sup>C]AC1332 bound robustly to choroid plexus, moderately to hippocampus, and minimally to cortex. Pimavanserin displaced [<sup>11</sup>C]AC1332 with similar potency (ED<sub>50</sub> = 0.062 mg/kg; EC<sub>50</sub> = 2.5 ng/ml) as its potency displacing [<sup>11</sup>C]CIMBI-36 binding from choroid plexus. These results demonstrate the feasibility of simultaneously estimating drug occupancy of 5-HT<sub>2A</sub> and 5-HT<sub>2C</sub> receptors in vivo, and the utility of a novel 5-HT<sub>2C</sub> receptor selective tracer ligand.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"352-364"},"PeriodicalIF":4.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11800257/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142017663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Moritz R Hernandez Petzsche, Johannes Bürkle, Gabriel Hoffmann, Claus Zimmer, Sebastian Rühling, Julian Schwarting, Silke Wunderlich, Christian Maegerlein, Tobias Boeckh-Behrens, Stefan Kaczmarz, Maria Berndt-Mück, Nico Sollmann
{"title":"Cerebral blood flow from arterial spin labeling as an imaging biomarker of outcome after endovascular therapy for ischemic stroke.","authors":"Moritz R Hernandez Petzsche, Johannes Bürkle, Gabriel Hoffmann, Claus Zimmer, Sebastian Rühling, Julian Schwarting, Silke Wunderlich, Christian Maegerlein, Tobias Boeckh-Behrens, Stefan Kaczmarz, Maria Berndt-Mück, Nico Sollmann","doi":"10.1177/0271678X241267066","DOIUrl":"10.1177/0271678X241267066","url":null,"abstract":"<p><p>Arterial spin labeling (ASL) is a contrast agent-free magnetic resonance imaging (MRI) technique to measure cerebral blood flow (CBF). We sought to investigate effects of CBF within the infarct on outcome and risk of hemorrhagic transformation (HT). In 111 patients (median age: 74 years, 50 men) who had undergone mechanical thrombectomy (MT) for ischemic stroke of the anterior circulation (median interval: 4 days between MT and MRI), post-stroke %CBF difference from pseudo-continuous ASL was calculated within the diffusion-weighted imaging (DWI)-positive infarct territory following lesion segmentation in relationship to the unaffected contralateral side. Functional independence was defined as a modified Rankin Scale (mRS) of 0-2 at 90 days post-stroke. %CBF difference, pre-stroke mRS, and infarct volume were independently associated with functional independence in a multivariate regression model. %CBF difference was comparable between patients with and without HT. A subcohort of 10 patients with decreased infarct-CBF despite expanded Treatment in Cerebral Infarction (eTICI) 2c or 3 recanalization was identified (likely related to the no-reflow phenomenon). Outcome was significantly worse in this group compared to the remaining cohort. In conclusion, ASL-derived %CBF difference from the DWI-positive infarct territory independently predicted functional independence, but %CBF difference was not significantly associated with an increased risk of HT.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"219-232"},"PeriodicalIF":4.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563528/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142371955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xinmei Kang, Xiaotao Su, Tiemei Li, Shisi Wang, Huipeng Huang, Yuxin Liu, Chunyi Li, Xiaohui Deng, Mengyan Hu, Tingting Lu, Lei Wei, Wei Cai, Zhengqi Lu
{"title":"Intra-cisterna-magna bevacizumab injection (ICM-BI) reproduces pathological alterations of cerebral small vessel diseases.","authors":"Xinmei Kang, Xiaotao Su, Tiemei Li, Shisi Wang, Huipeng Huang, Yuxin Liu, Chunyi Li, Xiaohui Deng, Mengyan Hu, Tingting Lu, Lei Wei, Wei Cai, Zhengqi Lu","doi":"10.1177/0271678X241295856","DOIUrl":"10.1177/0271678X241295856","url":null,"abstract":"<p><p>General modeling strategies for sporadic cerebral small blood vessel diseases (CSVDs) include limiting blood stream in large blood vessels and inducing systemic hypertension, in which small blood vessel deficit is either a secondary or concomitant pathology. In the current study, we introduce that intra-cisterna-magna Bevacizumab injection (ICM-BI) directly causes cerebral small blood vessel injury by neutralizing VEGF-A, the indispensable growth factor for angiogenesis. ICM-BI reproduces neuro-functional impairment, tight junction loss, cerebral micro-bleeds (CMBs), amyloid peptide accumulation, neuronal injury, white matter loss, and glial cell activation, which are common manifestations of sporadic CSVDs. Compared with existing CSVD models, small blood vessel injury is more prominent in the ICM-BI brain. Moreover, no significant alteration in large blood vessels or peripheral organs after ICM-BI is recorded. We thus propose that ICM-BI is a neat, economic and applicable methodology to establish murine sporadic CSVD model.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"244-258"},"PeriodicalIF":4.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563560/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Peng Zhang, Dan Yuan, Chenglei Luo, Wenjing Guo, Fengxian Li
{"title":"Role of pterygopalatine ganglion in regulating isoflurane-induced cerebral hyper-perfusion.","authors":"Peng Zhang, Dan Yuan, Chenglei Luo, Wenjing Guo, Fengxian Li","doi":"10.1177/0271678X241275351","DOIUrl":"10.1177/0271678X241275351","url":null,"abstract":"<p><p>Cerebral perfusion is functionally regulated by neural mechanisms in addition to the systemic hemodynamic variation, vascular reactivity and cerebral metabolism. Although anesthesia is generally esteemed to suppress the overall brain neural activity and metabolism, a few inhalation anesthetics, such as isoflurane, can increase cerebral perfusion, thus heightening the risks of higher intracranial pressure, bleeding, and brain edema during surgery. With the aid of laser speckle contrast imaging, we observed a transient yet limited effect of cerebral perfusion enhancement in mice from awake to anesthetized conditions with different concentration of isoflurane. Retrograde and antegrade tracing revealed a higher proportion of parasympathetic control more than sympathetic innervation for the blood vessels. Surprisingly, isoflurane directly activated pterygopalatine ganglion (PPG) explants and induced FOS expression in the cholinergic neurons. Chemogenetic activation of cholinergic PPG neurons reduced isoflurane-related cerebral perfusion. On the contrary, ablation of the cholinergic PPG neurons resulted in further enhancement of cerebral perfusion induced by isoflurane. While blocking muscarinic cholinergic receptors resulted in the overall reduction upon isoflurane stimulation, the blockage of nicotinic cholinergic receptors enhanced the isoflurane-induced cerebral perfusion only when PPG neurons exist. Collectively, these results suggest that PPG play important roles in regulating cerebral perfusion under isoflurane inhalation.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"306-318"},"PeriodicalIF":4.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11572115/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}