Journal of Cerebral Blood Flow and Metabolism最新文献

筛选
英文 中文
Oxygen extraction fraction change in M1-M6 brain regions of patients with unilateral or bilateral middle cerebral artery occlusion. 单侧或双侧大脑中动脉闭塞患者脑区 M1-M6 的析氧分数变化。
IF 4.9 2区 医学
Journal of Cerebral Blood Flow and Metabolism Pub Date : 2025-02-01 Epub Date: 2024-08-20 DOI: 10.1177/0271678X241276386
Yu Xiao, Zhenghua Liu, Xinghua Wan
{"title":"Oxygen extraction fraction change in M1-M6 brain regions of patients with unilateral or bilateral middle cerebral artery occlusion.","authors":"Yu Xiao, Zhenghua Liu, Xinghua Wan","doi":"10.1177/0271678X241276386","DOIUrl":"10.1177/0271678X241276386","url":null,"abstract":"<p><p>Cerebral blood flow (CBF) and oxygen extraction fraction (OEF) can be measured using arterial spin labeling (ASL) and quantitative susceptibility mapping (QSM) sequences, respectively. ASL and QSM sequences were performed on 13 healthy participants and 46 patients with unilateral or bilateral Middle cerebral artery (MCA) occlusion. M1-M3 and M4-M6 correspond to anterior, lateral, and posterior MCA territories within the insular ribbon and centrum semiovale, respectively. In patients with unilateral MCA occlusion, significant decreases in CBF were observed in the lesions in M1, M3, M5 and M6 regions, as well as in the contralateral M3 and M5 regions. The OEF of the lesion in the M1-M4 and M6 regions, and the contralateral M1-M3 regions were significantly higher. Additionally, the cerebral metabolic rate of oxygen (CMRO<sub>2</sub>) in the lesions of the M3 and M6 regions, and the contralateral M3 region, were significantly lower compared to the corresponding regions of healthy participants. For patients with bilateral MCA occlusion, the CMRO<sub>2</sub> in the left M5 region and the right M3 and M6 regions were significantly lower than that in the corresponding regions of healthy participants. In conclusion, abnormal hemodynamics occur in the contralateral hemisphere of patients with unilateral MCA occlusion.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"319-327"},"PeriodicalIF":4.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11572168/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142004368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rethinking animal attrition in preclinical research: Expressing causal mechanisms of selection bias using directed acyclic graphs. 反思临床前研究中的动物自然减员:利用有向无环图表达选择偏差的因果机制。
IF 4.9 2区 医学
Journal of Cerebral Blood Flow and Metabolism Pub Date : 2025-02-01 Epub Date: 2024-08-20 DOI: 10.1177/0271678X241275760
Anja Collazo, Hans-Georg Kuhn, Tobias Kurth, Marco Piccininni, Jessica L Rohmann
{"title":"Rethinking animal attrition in preclinical research: Expressing causal mechanisms of selection bias using directed acyclic graphs.","authors":"Anja Collazo, Hans-Georg Kuhn, Tobias Kurth, Marco Piccininni, Jessica L Rohmann","doi":"10.1177/0271678X241275760","DOIUrl":"10.1177/0271678X241275760","url":null,"abstract":"<p><p>Animal attrition in preclinical experiments can introduce bias in the estimation of causal treatment effects, as the treatment-outcome association in surviving animals may not represent the causal effect of interest. This can compromise the internal validity of the study despite randomization at the outset. Directed Acyclic Graphs (DAGs) are useful tools to transparently visualize assumptions about the causal structure underlying observed data. By illustrating relationships between relevant variables, DAGs enable the detection of even less intuitive biases, and can thereby inform strategies for their mitigation. In this study, we present an illustrative causal model for preclinical stroke research, in which animal attrition induces a specific type of selection bias (i.e., collider stratification bias) due to the interplay of animal welfare, initial disease severity and negative side effects of treatment. Even when the treatment had no causal effect, our simulations revealed substantial bias across different scenarios. We show how researchers can detect and potentially mitigate this bias in the analysis phase, even when only data from surviving animals are available, if knowledge of the underlying causal process that gave rise to the data is available. Collider stratification bias should be a concern in preclinical animal studies with severe side effects and high post-randomization attrition.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"340-351"},"PeriodicalIF":4.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11572016/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142004369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Model-predicted brain temperature computational imaging by multimodal noninvasive functional neuromonitoring of cerebral oxygen metabolism and hemodynamics: MRI-derived and clinical validation. 通过多模态无创功能神经监测脑氧代谢和血流动力学模型预测脑温计算成像:核磁共振成像和临床验证。
IF 4.9 2区 医学
Journal of Cerebral Blood Flow and Metabolism Pub Date : 2025-02-01 Epub Date: 2024-08-11 DOI: 10.1177/0271678X241270485
Miaowen Jiang, Fuzhi Cao, Qihan Zhang, Zhengfei Qi, Yuan Gao, Yang Zhang, Baoyin Song, Chuanjie Wu, Ming Li, Yongbo Xu, Xin Zhang, Yuan Wang, Ming Wei, Xunming Ji
{"title":"Model-predicted brain temperature computational imaging by multimodal noninvasive functional neuromonitoring of cerebral oxygen metabolism and hemodynamics: MRI-derived and clinical validation.","authors":"Miaowen Jiang, Fuzhi Cao, Qihan Zhang, Zhengfei Qi, Yuan Gao, Yang Zhang, Baoyin Song, Chuanjie Wu, Ming Li, Yongbo Xu, Xin Zhang, Yuan Wang, Ming Wei, Xunming Ji","doi":"10.1177/0271678X241270485","DOIUrl":"10.1177/0271678X241270485","url":null,"abstract":"<p><p>Brain temperature, a crucial yet under-researched neurophysiological parameter, is governed by the equilibrium between cerebral oxygen metabolism and hemodynamics. Therapeutic hypothermia has been demonstrated as an effective intervention for acute brain injuries, enhancing survival rates and prognosis. The success of this treatment hinges on the precise regulation of brain temperature. However, the absence of comprehensive brain temperature monitoring methods during therapy, combined with a limited understanding of human brain heat transmission mechanisms, significantly hampers the advancement of hypothermia-based neuroprotective therapies. Leveraging the principles of bioheat transfer and MRI technology, this study conducted quantitative analyses of brain heat transfer during mild hypothermia therapy. Utilizing MRI, we reconstructed brain structures, estimated cerebral blood flow and oxygen consumption parameters, and developed a brain temperature calculation model founded on bioheat transfer theory. Employing computational cerebral hemodynamic simulation analysis, we established an intracranial arterial fluid dynamics model to predict brain temperature variations across different therapeutic hypothermia modalities. We introduce a noninvasive, spatially resolved, and optimized mathematical bio-heat model that synergizes model-predicted and MRI-derived data for brain temperature prediction and imaging. Our findings reveal that the brain temperature images generated by our model reflect distinct spatial variations across individual participants, aligning with experimentally observed temperatures.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"275-291"},"PeriodicalIF":4.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11572106/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141916819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Imaging the 5-HT2C receptor with PET: Evaluation of 5-HT2C and 5-HT2A affinity of pimavanserin in the primate brain. 用 PET 对 5-HT2C 受体进行成像:评估灵长类动物大脑中匹马伐林的 5-HT2C 和 5-HT2A 亲和力。
IF 4.9 2区 医学
Journal of Cerebral Blood Flow and Metabolism Pub Date : 2025-02-01 Epub Date: 2024-08-21 DOI: 10.1177/0271678X241276312
Khanum Ridler, Gaia Rizzo, Ethan S Burstein, Anton Forsberg Morén, Vladimir Stepanov, Christer Halldin, Eugenii A Rabiner
{"title":"Imaging the 5-HT<sub>2C</sub> receptor with PET: Evaluation of 5-HT<sub>2C</sub> and 5-HT<sub>2A</sub> affinity of pimavanserin in the primate brain.","authors":"Khanum Ridler, Gaia Rizzo, Ethan S Burstein, Anton Forsberg Morén, Vladimir Stepanov, Christer Halldin, Eugenii A Rabiner","doi":"10.1177/0271678X241276312","DOIUrl":"10.1177/0271678X241276312","url":null,"abstract":"<p><p>Two complimentary techniques were used to estimate occupancy of pimavanserin (a selective 5-HT<sub>2A/2C</sub> inverse agonist) to 5-HT<sub>2A</sub> and 5-HT<sub>2C</sub> receptors in non-human primate brains. One employed the 5-HT<sub>2A/2C</sub> selective radioligand [<sup>11</sup>C]CIMBI-36 combined with quantification of binding potentials in brain regions known to be enriched in 5-HT<sub>2A</sub> (cortex) or 5-HT<sub>2C</sub> (choroid plexus) receptors to estimate occupancy. Pimavanserin was 6-10 fold more potent displacing [<sup>11</sup>C]CIMBI-36 from cortex (ED<sub>50</sub> = 0.007 mg/kg; EC<sub>50</sub> = 0.6 ng/ml) than from choroid plexus (ED<sub>50</sub> =0.046 mg/kg; EC<sub>50</sub> = 6.0 ng/ml). The assignment of [<sup>11</sup>C]CIMBI-36 binding to 5-HT<sub>2A</sub> and 5-HT<sub>2C</sub> receptors by anatomical brain structure was confirmed using the 5-HT<sub>2A</sub> selective inverse agonist MDL 100,907 and the 5-HT<sub>2C</sub> selective antagonist SB 242584 to displace [<sup>11</sup>C]CIMBI-36. The second technique employed a novel, 5-HT<sub>2C</sub> selective tracer called [<sup>11</sup>C]AC1332. [<sup>11</sup>C]AC1332 bound robustly to choroid plexus, moderately to hippocampus, and minimally to cortex. Pimavanserin displaced [<sup>11</sup>C]AC1332 with similar potency (ED<sub>50</sub> = 0.062 mg/kg; EC<sub>50</sub> = 2.5 ng/ml) as its potency displacing [<sup>11</sup>C]CIMBI-36 binding from choroid plexus. These results demonstrate the feasibility of simultaneously estimating drug occupancy of 5-HT<sub>2A</sub> and 5-HT<sub>2C</sub> receptors in vivo, and the utility of a novel 5-HT<sub>2C</sub> receptor selective tracer ligand.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"352-364"},"PeriodicalIF":4.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11800257/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142017663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cerebral blood flow from arterial spin labeling as an imaging biomarker of outcome after endovascular therapy for ischemic stroke. 动脉自旋标记的脑血流作为缺血性中风血管内治疗后疗效的成像生物标志物。
IF 4.9 2区 医学
Journal of Cerebral Blood Flow and Metabolism Pub Date : 2025-02-01 Epub Date: 2024-10-04 DOI: 10.1177/0271678X241267066
Moritz R Hernandez Petzsche, Johannes Bürkle, Gabriel Hoffmann, Claus Zimmer, Sebastian Rühling, Julian Schwarting, Silke Wunderlich, Christian Maegerlein, Tobias Boeckh-Behrens, Stefan Kaczmarz, Maria Berndt-Mück, Nico Sollmann
{"title":"Cerebral blood flow from arterial spin labeling as an imaging biomarker of outcome after endovascular therapy for ischemic stroke.","authors":"Moritz R Hernandez Petzsche, Johannes Bürkle, Gabriel Hoffmann, Claus Zimmer, Sebastian Rühling, Julian Schwarting, Silke Wunderlich, Christian Maegerlein, Tobias Boeckh-Behrens, Stefan Kaczmarz, Maria Berndt-Mück, Nico Sollmann","doi":"10.1177/0271678X241267066","DOIUrl":"10.1177/0271678X241267066","url":null,"abstract":"<p><p>Arterial spin labeling (ASL) is a contrast agent-free magnetic resonance imaging (MRI) technique to measure cerebral blood flow (CBF). We sought to investigate effects of CBF within the infarct on outcome and risk of hemorrhagic transformation (HT). In 111 patients (median age: 74 years, 50 men) who had undergone mechanical thrombectomy (MT) for ischemic stroke of the anterior circulation (median interval: 4 days between MT and MRI), post-stroke %CBF difference from pseudo-continuous ASL was calculated within the diffusion-weighted imaging (DWI)-positive infarct territory following lesion segmentation in relationship to the unaffected contralateral side. Functional independence was defined as a modified Rankin Scale (mRS) of 0-2 at 90 days post-stroke. %CBF difference, pre-stroke mRS, and infarct volume were independently associated with functional independence in a multivariate regression model. %CBF difference was comparable between patients with and without HT. A subcohort of 10 patients with decreased infarct-CBF despite expanded Treatment in Cerebral Infarction (eTICI) 2c or 3 recanalization was identified (likely related to the no-reflow phenomenon). Outcome was significantly worse in this group compared to the remaining cohort. In conclusion, ASL-derived %CBF difference from the DWI-positive infarct territory independently predicted functional independence, but %CBF difference was not significantly associated with an increased risk of HT.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"219-232"},"PeriodicalIF":4.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563528/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142371955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intra-cisterna-magna bevacizumab injection (ICM-BI) reproduces pathological alterations of cerebral small vessel diseases. 蝶窦内注射贝伐珠单抗(ICM-BI)可重现脑小血管疾病的病理改变。
IF 4.9 2区 医学
Journal of Cerebral Blood Flow and Metabolism Pub Date : 2025-02-01 Epub Date: 2024-10-25 DOI: 10.1177/0271678X241295856
Xinmei Kang, Xiaotao Su, Tiemei Li, Shisi Wang, Huipeng Huang, Yuxin Liu, Chunyi Li, Xiaohui Deng, Mengyan Hu, Tingting Lu, Lei Wei, Wei Cai, Zhengqi Lu
{"title":"Intra-cisterna-magna bevacizumab injection (ICM-BI) reproduces pathological alterations of cerebral small vessel diseases.","authors":"Xinmei Kang, Xiaotao Su, Tiemei Li, Shisi Wang, Huipeng Huang, Yuxin Liu, Chunyi Li, Xiaohui Deng, Mengyan Hu, Tingting Lu, Lei Wei, Wei Cai, Zhengqi Lu","doi":"10.1177/0271678X241295856","DOIUrl":"10.1177/0271678X241295856","url":null,"abstract":"<p><p>General modeling strategies for sporadic cerebral small blood vessel diseases (CSVDs) include limiting blood stream in large blood vessels and inducing systemic hypertension, in which small blood vessel deficit is either a secondary or concomitant pathology. In the current study, we introduce that intra-cisterna-magna Bevacizumab injection (ICM-BI) directly causes cerebral small blood vessel injury by neutralizing VEGF-A, the indispensable growth factor for angiogenesis. ICM-BI reproduces neuro-functional impairment, tight junction loss, cerebral micro-bleeds (CMBs), amyloid peptide accumulation, neuronal injury, white matter loss, and glial cell activation, which are common manifestations of sporadic CSVDs. Compared with existing CSVD models, small blood vessel injury is more prominent in the ICM-BI brain. Moreover, no significant alteration in large blood vessels or peripheral organs after ICM-BI is recorded. We thus propose that ICM-BI is a neat, economic and applicable methodology to establish murine sporadic CSVD model.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"244-258"},"PeriodicalIF":4.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563560/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of pterygopalatine ganglion in regulating isoflurane-induced cerebral hyper-perfusion. 翼腭神经节在调节异氟醚诱导的脑过度灌注中的作用
IF 4.9 2区 医学
Journal of Cerebral Blood Flow and Metabolism Pub Date : 2025-02-01 Epub Date: 2024-08-19 DOI: 10.1177/0271678X241275351
Peng Zhang, Dan Yuan, Chenglei Luo, Wenjing Guo, Fengxian Li
{"title":"Role of pterygopalatine ganglion in regulating isoflurane-induced cerebral hyper-perfusion.","authors":"Peng Zhang, Dan Yuan, Chenglei Luo, Wenjing Guo, Fengxian Li","doi":"10.1177/0271678X241275351","DOIUrl":"10.1177/0271678X241275351","url":null,"abstract":"<p><p>Cerebral perfusion is functionally regulated by neural mechanisms in addition to the systemic hemodynamic variation, vascular reactivity and cerebral metabolism. Although anesthesia is generally esteemed to suppress the overall brain neural activity and metabolism, a few inhalation anesthetics, such as isoflurane, can increase cerebral perfusion, thus heightening the risks of higher intracranial pressure, bleeding, and brain edema during surgery. With the aid of laser speckle contrast imaging, we observed a transient yet limited effect of cerebral perfusion enhancement in mice from awake to anesthetized conditions with different concentration of isoflurane. Retrograde and antegrade tracing revealed a higher proportion of parasympathetic control more than sympathetic innervation for the blood vessels. Surprisingly, isoflurane directly activated pterygopalatine ganglion (PPG) explants and induced FOS expression in the cholinergic neurons. Chemogenetic activation of cholinergic PPG neurons reduced isoflurane-related cerebral perfusion. On the contrary, ablation of the cholinergic PPG neurons resulted in further enhancement of cerebral perfusion induced by isoflurane. While blocking muscarinic cholinergic receptors resulted in the overall reduction upon isoflurane stimulation, the blockage of nicotinic cholinergic receptors enhanced the isoflurane-induced cerebral perfusion only when PPG neurons exist. Collectively, these results suggest that PPG play important roles in regulating cerebral perfusion under isoflurane inhalation.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"306-318"},"PeriodicalIF":4.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11572115/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuroinflammation and blood-brain barrier breakdown in acute, clinical intracerebral hemorrhage. 急性临床脑出血的神经炎症和血脑屏障破坏。
IF 4.9 2区 医学
Journal of Cerebral Blood Flow and Metabolism Pub Date : 2025-02-01 Epub Date: 2024-10-03 DOI: 10.1177/0271678X241274685
Olivia A Jones, Saffwan Mohamed, Rainer Hinz, Alastair Paterson, Oluwaseun A Sobowale, Ben R Dickie, Laura M Parkes, Adrian R Parry-Jones
{"title":"Neuroinflammation and blood-brain barrier breakdown in acute, clinical intracerebral hemorrhage.","authors":"Olivia A Jones, Saffwan Mohamed, Rainer Hinz, Alastair Paterson, Oluwaseun A Sobowale, Ben R Dickie, Laura M Parkes, Adrian R Parry-Jones","doi":"10.1177/0271678X241274685","DOIUrl":"10.1177/0271678X241274685","url":null,"abstract":"<p><p>Neuroinflammation is a promising therapeutic target in intracerebral hemorrhage (ICH), characterized in the brain by microglial activation and blood-brain barrier (BBB) breakdown. In this study, 36 acute, spontaneous, supratentorial ICH patients underwent dynamic contrast-enhanced MRI to measure BBB permeability (<i>K</i><sup>trans</sup>) 1-3 days post-onset and 16 returned for [<sup>11</sup>C](<i>R</i>)-PK11195 PET to quantify microglial activation (<i>BP<sub>ND</sub></i>), 2-7 days post-onset. We first tested if these markers were increased and co-localized in the perihematomal brain and found that perihematomal <i>K</i><sup>trans</sup> and <i>BP<sub>ND</sub></i> were increased vs. the contralateral brain, but regions of high <i>K</i><sup>trans</sup> and <i>BP<sub>ND</sub></i> only overlapped by a mean of 4.9%. We then tested for associations of perihematomal <i>K</i><sup>trans</sup> and <i>BP<sub>ND</sub></i> with clinical characteristics (age, ICH volume & location, blood pressure), other markers of inflammation (edema, IL-6, and CRP), and long-term functional outcome (90-day mRS). Lower perihematomal <i>BP<sub>ND</sub></i> was associated with increasing age. Lobar hemorrhage was associated with greater <i>K</i><sup>trans</sup> than deep, but <i>K</i><sup>trans</sup> and <i>BP<sub>ND</sub></i> were not associated with ICH volume, or other inflammatory markers. While perihematomal <i>K</i><sup>trans</sup> and <i>BP<sub>ND</sub></i>were not associated with outcome, contralateral <i>K</i><sup>trans</sup> was significantly associated with greater 90-day mRS. Exploratory analyses demonstrated that blood pressure variability over 72 h was also associated with contralateral <i>K</i><sup>trans</sup>.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"233-243"},"PeriodicalIF":4.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563506/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Association between PPARγ polymorphisms and neurological functional disability of ischemic stroke. PPARγ 多态性与缺血性脑卒中神经功能残疾的关系
IF 4.9 2区 医学
Journal of Cerebral Blood Flow and Metabolism Pub Date : 2025-02-01 Epub Date: 2024-08-20 DOI: 10.1177/0271678X241274681
Ran Yan, Xin Qiu, Yalun Dai, Yingyu Jiang, Hongqiu Gu, Yong Jiang, Lingling Ding, Si Cheng, Xia Meng, Yilong Wang, Xingquan Zhao, Hao Li, Yongjun Wang, Zixiao Li
{"title":"Association between PPAR<b>γ</b> polymorphisms and neurological functional disability of ischemic stroke.","authors":"Ran Yan, Xin Qiu, Yalun Dai, Yingyu Jiang, Hongqiu Gu, Yong Jiang, Lingling Ding, Si Cheng, Xia Meng, Yilong Wang, Xingquan Zhao, Hao Li, Yongjun Wang, Zixiao Li","doi":"10.1177/0271678X241274681","DOIUrl":"10.1177/0271678X241274681","url":null,"abstract":"<p><p>Peroxisome proliferator-activated receptor-γ (<i>PPARγ</i>) plays a protective role against brain injury after stroke in mice. However, the relationship between <i>PPARγ</i> gene polymorphisms and the functional outcome of acute ischemic stroke (AIS) remains unknown. 8822 patients from The Third China National Stroke Registry (CNSR-III) after whole-genome sequencing, two functional single nucleotide polymorphisms(SNPs) in <i>PPARγ</i>, rs1801282 C > G and rs3856806 C > T, were further analysed. The primary outcome was neurological functional disability at three months. Of the 8822 patients, 968 (11.0%) and 3497 (39.6%) were carriers of rs1801282 and rs3856806, respectively. Carriers of rs3856806 showed reduced risks for three-month neurological functional disability (OR, 0.84; 95% CI, 0.73-0.98; p = 0.02) and reduced risks for higher infarct volume (OR 0.90, 95% CI, 0.81-0.99, p = 0.04). They also had a reduced risk of neurological functional disability only in case of lower baseline IL-6 levels (OR 0.64, 95% CI 0.48-0.84, P<sub>interaction</sub> = 0.01). Carriers of rs1801282 had a reduced risk for three-month neurological functional disability (OR 0.77, 95% CI, 0.61-0.99, p = 0.04). Our study suggested that PPARγ polymorphisms are associated with a reduced risk for neurological functional disability and higher infarct volume in AIS. Therefore, PPARγ can be a potential therapeutic target in AIS.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"328-339"},"PeriodicalIF":4.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11572223/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142004338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[18F]SF51, a novel 18F-labeled PET radioligand for translocator protein 18kDa (TSPO) in brain, works well in monkeys but fails in humans. [18F]SF51是一种新的18F标记的PET放射性配体,用于脑转运蛋白18kDa (TSPO),在猴子中表现良好,但在人类中却表现不佳。
IF 4.9 2区 医学
Journal of Cerebral Blood Flow and Metabolism Pub Date : 2025-02-01 Epub Date: 2024-12-09 DOI: 10.1177/0271678X241304924
Xuefeng Yan, Fabrice G Siméon, Jeih-San Liow, Cheryl L Morse, Susovan Jana, Jose A Montero Santamaria, Madeline Jenkins, Sami S Zoghbi, Victor W Pike, Robert B Innis, Paolo Zanotti-Fregonara
{"title":"[<sup>18</sup>F]SF51, a novel <sup>18</sup>F-labeled PET radioligand for translocator protein 18kDa (TSPO) in brain, works well in monkeys but fails in humans.","authors":"Xuefeng Yan, Fabrice G Siméon, Jeih-San Liow, Cheryl L Morse, Susovan Jana, Jose A Montero Santamaria, Madeline Jenkins, Sami S Zoghbi, Victor W Pike, Robert B Innis, Paolo Zanotti-Fregonara","doi":"10.1177/0271678X241304924","DOIUrl":"10.1177/0271678X241304924","url":null,"abstract":"<p><p>[<sup>18</sup>F]SF51 is a novel radioligand for imaging translocator protein 18 kDa (TSPO) that previously displayed excellent imaging properties in nonhuman primates. This study assessed its performance in human brain and its dosimetry. Seven healthy participants underwent brain PET imaging to measure TSPO binding using a two-tissue compartment model (2TCM) to calculate total distribution volume (<i>V</i><sub>T</sub>). This cohort included two high-affinity binders (HABs), three mixed-affinity binders (MABs), and two low-affinity binders (LABs). Two other participants received whole-body scans to assess radiation exposure. Peak brain radioactivity reached a standardized uptake value (SUV) of 1.4 at 3 minutes post-injection, diminishing to 30% of peak by 120 minutes. The average <i>V</i><sub>T</sub> for all genotype groups was notably low (<1 mL·cm<sup>-3</sup>), emphasizing the radioligand's poor binding in brain. [<sup>18</sup>F]SF51 remained sensitive to the TSPO polymorphism <i>in vivo</i>, as shown by a two-fold difference in <i>V</i><sub>T</sub> between HABs and LABs. <i>V</i><sub>T</sub> stabilization by 80 minutes post-injection suggested minimal radiometabolite accumulation in brain. The average effective dose was 13.8 ± 0.9 µSv/MBq. Contrary to previously published animal data, [<sup>18</sup>F]SF51 showed low binding to human TSPO, with uptake remaining influenced by the rs6971 polymorphism. These findings highlight the challenges of developing TSPO radioligands and underscore the significant species differences that may influence translational outcomes.<b>ClinicalTrials.gov identifier:</b> NCT05564429; registered 10/03/2022.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"365-372"},"PeriodicalIF":4.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11629344/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142800308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信