Julia Huck, Davy Vanderweyen, Tatjana Rundek, Mitchell Sv Elkind, Jose Gutierrez, Maxime Descoteaux, Kevin Whittingstall
{"title":"Accurate and fully automated diameter measurements of Circle of Willis arteries on MRA imaging.","authors":"Julia Huck, Davy Vanderweyen, Tatjana Rundek, Mitchell Sv Elkind, Jose Gutierrez, Maxime Descoteaux, Kevin Whittingstall","doi":"10.1177/0271678X251338972","DOIUrl":null,"url":null,"abstract":"<p><p>The Circle of Willis (CW), visualized via Magnetic Resonance Angiography (MRA), is crucial for assessing cerebral circulation. Accurate artery identification is essential not only for detecting stenosis and pathological changes but also for understanding vascular adaptations in healthy aging. Manual CW assessment is time-consuming, necessitating automated alternatives. This study evaluates intracranial artery diameter estimations from the Express IntraCranial Arteries Breakdown (eICAB) toolbox against manual measurements. eICAB was tested on 631 participants from the Northern Manhattan Study (NOMAS) with 1.5T MRA images (0.293 × 0.293 × 1 mm resolution). We analyzed eICAB's detection and diameter estimation accuracy of the Internal Carotid (ICA), Basilar (BA), Anterior Cerebral (ACA), Middle Cerebral (MCA), Posterior Cerebral (PCA), and Posterior Communicating (PCom). eICAB showed over 95% accuracy in detecting major arteries except for PCA and PCom (∼80%). Diameter discrepancies were generally ≤0.5 mm, with ICA and BA reaching 1 mm. Spearman correlation (p ≪ 0.05) confirmed strong agreement between automated and manual measurements. Resampling at 0.2083 mm improved precision. eICAB accurately identifies CW arteries and estimates diameters, demonstrating strong clinical and research potential.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"271678X251338972"},"PeriodicalIF":4.9000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cerebral Blood Flow and Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/0271678X251338972","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
The Circle of Willis (CW), visualized via Magnetic Resonance Angiography (MRA), is crucial for assessing cerebral circulation. Accurate artery identification is essential not only for detecting stenosis and pathological changes but also for understanding vascular adaptations in healthy aging. Manual CW assessment is time-consuming, necessitating automated alternatives. This study evaluates intracranial artery diameter estimations from the Express IntraCranial Arteries Breakdown (eICAB) toolbox against manual measurements. eICAB was tested on 631 participants from the Northern Manhattan Study (NOMAS) with 1.5T MRA images (0.293 × 0.293 × 1 mm resolution). We analyzed eICAB's detection and diameter estimation accuracy of the Internal Carotid (ICA), Basilar (BA), Anterior Cerebral (ACA), Middle Cerebral (MCA), Posterior Cerebral (PCA), and Posterior Communicating (PCom). eICAB showed over 95% accuracy in detecting major arteries except for PCA and PCom (∼80%). Diameter discrepancies were generally ≤0.5 mm, with ICA and BA reaching 1 mm. Spearman correlation (p ≪ 0.05) confirmed strong agreement between automated and manual measurements. Resampling at 0.2083 mm improved precision. eICAB accurately identifies CW arteries and estimates diameters, demonstrating strong clinical and research potential.
期刊介绍:
JCBFM is the official journal of the International Society for Cerebral Blood Flow & Metabolism, which is committed to publishing high quality, independently peer-reviewed research and review material. JCBFM stands at the interface between basic and clinical neurovascular research, and features timely and relevant research highlighting experimental, theoretical, and clinical aspects of brain circulation, metabolism and imaging. The journal is relevant to any physician or scientist with an interest in brain function, cerebrovascular disease, cerebral vascular regulation and brain metabolism, including neurologists, neurochemists, physiologists, pharmacologists, anesthesiologists, neuroradiologists, neurosurgeons, neuropathologists and neuroscientists.