Deciphering the brain glucose metabolism: A gateway to innovative stroke therapies.

IF 4.5 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Didier F Pisani, Nicolas Blondeau
{"title":"Deciphering the brain glucose metabolism: A gateway to innovative stroke therapies.","authors":"Didier F Pisani, Nicolas Blondeau","doi":"10.1177/0271678X251346277","DOIUrl":null,"url":null,"abstract":"<p><p>Stroke is the leading cause of physical disability and death among adults in most Western countries. Consecutive to a vascular occlusion, cells face a brutal reduction in supply of oxygen and glucose and thus an energy failure, which in turn triggers cell death mechanisms. Among brain cells, neurons are the most susceptible to ischemia because of their high metabolic demand and low reservoir of energy substrates. In neurons, glycolysis uses glucose coming from blood or from glycogen stored in astrocytes, underlying the deep astrocyte-neuron metabolic cooperation. During ischemia, both the aerobic and anaerobic pathways and thus energy production are compromised, which disrupts proper cell functioning, notably Na<sup>+</sup>/K<sup>+</sup> ATPase and mitochondria. This results in altered Ca<sup>2+</sup> homeostasis and overproduction of ROS, the latter being further exacerbated during the reperfusion phase. Consequently, glucose metabolism in the different brain cell populations plays a central role in injury and recovery after stroke, and has recently emerged as a promising target for therapeutic intervention. In this context, the overall objective of this article is to review the interconnections between stroke and brain glucose metabolism and to explore how its targeting may offer new therapeutic opportunities in addressing the global stroke epidemic.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"1635-1653"},"PeriodicalIF":4.5000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12122490/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cerebral Blood Flow and Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/0271678X251346277","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Stroke is the leading cause of physical disability and death among adults in most Western countries. Consecutive to a vascular occlusion, cells face a brutal reduction in supply of oxygen and glucose and thus an energy failure, which in turn triggers cell death mechanisms. Among brain cells, neurons are the most susceptible to ischemia because of their high metabolic demand and low reservoir of energy substrates. In neurons, glycolysis uses glucose coming from blood or from glycogen stored in astrocytes, underlying the deep astrocyte-neuron metabolic cooperation. During ischemia, both the aerobic and anaerobic pathways and thus energy production are compromised, which disrupts proper cell functioning, notably Na+/K+ ATPase and mitochondria. This results in altered Ca2+ homeostasis and overproduction of ROS, the latter being further exacerbated during the reperfusion phase. Consequently, glucose metabolism in the different brain cell populations plays a central role in injury and recovery after stroke, and has recently emerged as a promising target for therapeutic intervention. In this context, the overall objective of this article is to review the interconnections between stroke and brain glucose metabolism and to explore how its targeting may offer new therapeutic opportunities in addressing the global stroke epidemic.

解读脑葡萄糖代谢:创新中风治疗的途径。
在大多数西方国家,中风是导致成年人身体残疾和死亡的主要原因。连续血管闭塞,细胞面临氧气和葡萄糖供应的严重减少,从而导致能量衰竭,进而引发细胞死亡机制。在脑细胞中,神经元因其高代谢需求和低能量底物储存而最容易受到缺血的影响。在神经元中,糖酵解使用来自血液的葡萄糖或储存在星形胶质细胞中的糖原,这是星形胶质细胞-神经元深层代谢合作的基础。在缺血期间,有氧和无氧途径以及能量产生都受到损害,这破坏了正常的细胞功能,特别是Na+/K+ atp酶和线粒体。这导致Ca2+稳态的改变和ROS的过量产生,后者在再灌注阶段进一步加剧。因此,不同脑细胞群中的葡萄糖代谢在中风后的损伤和恢复中起着核心作用,最近成为治疗干预的一个有希望的目标。在此背景下,本文的总体目标是回顾脑卒中与脑葡萄糖代谢之间的相互联系,并探讨其靶向如何为解决全球脑卒中流行提供新的治疗机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cerebral Blood Flow and Metabolism
Journal of Cerebral Blood Flow and Metabolism 医学-内分泌学与代谢
CiteScore
12.00
自引率
4.80%
发文量
300
审稿时长
3 months
期刊介绍: JCBFM is the official journal of the International Society for Cerebral Blood Flow & Metabolism, which is committed to publishing high quality, independently peer-reviewed research and review material. JCBFM stands at the interface between basic and clinical neurovascular research, and features timely and relevant research highlighting experimental, theoretical, and clinical aspects of brain circulation, metabolism and imaging. The journal is relevant to any physician or scientist with an interest in brain function, cerebrovascular disease, cerebral vascular regulation and brain metabolism, including neurologists, neurochemists, physiologists, pharmacologists, anesthesiologists, neuroradiologists, neurosurgeons, neuropathologists and neuroscientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信