脑动脉瘤生长的两种可能的血流动力学机制取决于它们的大小:NHO CFD ABO研究。

IF 4.5 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Shunichi Fukuda, Yuji Shimogonya, Aoi Watanabe, Naohiro Yonemoto, Miyuki Fukuda, Akihiro Yasoda
{"title":"脑动脉瘤生长的两种可能的血流动力学机制取决于它们的大小:NHO CFD ABO研究。","authors":"Shunichi Fukuda, Yuji Shimogonya, Aoi Watanabe, Naohiro Yonemoto, Miyuki Fukuda, Akihiro Yasoda","doi":"10.1177/0271678X251325972","DOIUrl":null,"url":null,"abstract":"<p><p>Cerebral aneurysm rupture has a poor prognosis, and growing aneurysms are prone to rupture. We therefore conducted a prospective observational study to clarify hemodynamics inducing aneurysm growth, which are poorly understood. Computational fluid dynamics analysis was performed using the patient-specific arterial geometry and flow velocities. Hemodynamic metrics were compared by multivariate analysis between aneurysms enlarged ≥1 mm and stable aneurysms. We enrolled 481 patients. For aneurysms <4 mm, the time-averaged wall shear stress (WSS) was significantly higher in growing aneurysms for the whole aneurysm, neck, body and parent artery, and transverse WSS was significantly higher on the neck and parent artery. In aneurysms ≥4 mm, the normalized transverse WSS was significantly higher in growing aneurysms for the whole aneurysm and dome. Aneurysms <4 mm were likely to show whole-aneurysm growth, while aneurysms ≥4 mm were enlarged at the dome. There may exist two hemodynamic mechanisms for aneurysm growth depending on size. Aneurysms <4 mm may grow near the neck with high magnitudes and multi-directional WSS disturbances, while aneurysms ≥4 mm may grow on the dome with enhanced multi-directional WSS disturbance. These results may be useful in considering indications for surgical treatment. They may help resolve two conflicting hemodynamic rupture theories.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"1581-1592"},"PeriodicalIF":4.5000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11907627/pdf/","citationCount":"0","resultStr":"{\"title\":\"Two possible hemodynamic mechanisms underlying the growth of cerebral aneurysms depending on their size: The NHO CFD ABO study.\",\"authors\":\"Shunichi Fukuda, Yuji Shimogonya, Aoi Watanabe, Naohiro Yonemoto, Miyuki Fukuda, Akihiro Yasoda\",\"doi\":\"10.1177/0271678X251325972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cerebral aneurysm rupture has a poor prognosis, and growing aneurysms are prone to rupture. We therefore conducted a prospective observational study to clarify hemodynamics inducing aneurysm growth, which are poorly understood. Computational fluid dynamics analysis was performed using the patient-specific arterial geometry and flow velocities. Hemodynamic metrics were compared by multivariate analysis between aneurysms enlarged ≥1 mm and stable aneurysms. We enrolled 481 patients. For aneurysms <4 mm, the time-averaged wall shear stress (WSS) was significantly higher in growing aneurysms for the whole aneurysm, neck, body and parent artery, and transverse WSS was significantly higher on the neck and parent artery. In aneurysms ≥4 mm, the normalized transverse WSS was significantly higher in growing aneurysms for the whole aneurysm and dome. Aneurysms <4 mm were likely to show whole-aneurysm growth, while aneurysms ≥4 mm were enlarged at the dome. There may exist two hemodynamic mechanisms for aneurysm growth depending on size. Aneurysms <4 mm may grow near the neck with high magnitudes and multi-directional WSS disturbances, while aneurysms ≥4 mm may grow on the dome with enhanced multi-directional WSS disturbance. These results may be useful in considering indications for surgical treatment. They may help resolve two conflicting hemodynamic rupture theories.</p>\",\"PeriodicalId\":15325,\"journal\":{\"name\":\"Journal of Cerebral Blood Flow and Metabolism\",\"volume\":\" \",\"pages\":\"1581-1592\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11907627/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cerebral Blood Flow and Metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/0271678X251325972\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cerebral Blood Flow and Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/0271678X251325972","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

脑动脉瘤破裂的预后很差,而生长中的动脉瘤很容易破裂。因此,我们进行了一项前瞻性观察研究,以澄清目前尚不清楚的诱发动脉瘤生长的血流动力学。我们利用患者特定的动脉几何形状和流速进行了计算流体动力学分析。通过多变量分析比较了增大≥1毫米的动脉瘤和稳定动脉瘤的血液动力学指标。我们共收治了 481 名患者。动脉瘤
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two possible hemodynamic mechanisms underlying the growth of cerebral aneurysms depending on their size: The NHO CFD ABO study.

Cerebral aneurysm rupture has a poor prognosis, and growing aneurysms are prone to rupture. We therefore conducted a prospective observational study to clarify hemodynamics inducing aneurysm growth, which are poorly understood. Computational fluid dynamics analysis was performed using the patient-specific arterial geometry and flow velocities. Hemodynamic metrics were compared by multivariate analysis between aneurysms enlarged ≥1 mm and stable aneurysms. We enrolled 481 patients. For aneurysms <4 mm, the time-averaged wall shear stress (WSS) was significantly higher in growing aneurysms for the whole aneurysm, neck, body and parent artery, and transverse WSS was significantly higher on the neck and parent artery. In aneurysms ≥4 mm, the normalized transverse WSS was significantly higher in growing aneurysms for the whole aneurysm and dome. Aneurysms <4 mm were likely to show whole-aneurysm growth, while aneurysms ≥4 mm were enlarged at the dome. There may exist two hemodynamic mechanisms for aneurysm growth depending on size. Aneurysms <4 mm may grow near the neck with high magnitudes and multi-directional WSS disturbances, while aneurysms ≥4 mm may grow on the dome with enhanced multi-directional WSS disturbance. These results may be useful in considering indications for surgical treatment. They may help resolve two conflicting hemodynamic rupture theories.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cerebral Blood Flow and Metabolism
Journal of Cerebral Blood Flow and Metabolism 医学-内分泌学与代谢
CiteScore
12.00
自引率
4.80%
发文量
300
审稿时长
3 months
期刊介绍: JCBFM is the official journal of the International Society for Cerebral Blood Flow & Metabolism, which is committed to publishing high quality, independently peer-reviewed research and review material. JCBFM stands at the interface between basic and clinical neurovascular research, and features timely and relevant research highlighting experimental, theoretical, and clinical aspects of brain circulation, metabolism and imaging. The journal is relevant to any physician or scientist with an interest in brain function, cerebrovascular disease, cerebral vascular regulation and brain metabolism, including neurologists, neurochemists, physiologists, pharmacologists, anesthesiologists, neuroradiologists, neurosurgeons, neuropathologists and neuroscientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信