R. A. Folk, C. M. Siniscalchi, J. Doby, H. R. Kates, S. R. Manchester, P. S. Soltis, D. E. Soltis, R. P. Guralnick, M. Belitz
{"title":"Spatial phylogenetics of Fagales: Investigating drivers of temperate forest distributions","authors":"R. A. Folk, C. M. Siniscalchi, J. Doby, H. R. Kates, S. R. Manchester, P. S. Soltis, D. E. Soltis, R. P. Guralnick, M. Belitz","doi":"10.1111/jbi.14840","DOIUrl":"10.1111/jbi.14840","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Aim</h3>\u0000 \u0000 <p>Quantifying the phylogenetic diversity of temperate trees is essential for understanding the processes that have shaped the modern distribution of temperate broadleaf forest and other major forest biomes. Here, we focus on Fagales, an iconic member of forests worldwide, to uncover global diversity and endemism patterns and investigate the distribution of root nodule symbiosis (RNS), an important morphological specialisation in this clade, as a key factor behind these patterns.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Location</h3>\u0000 \u0000 <p>Global.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Taxon</h3>\u0000 \u0000 <p>Fagales.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>We combined phylogenetic data covering 60.2% of living species, fine-scale distribution models covering 90% of species, and nodulation data covering all species to investigate the distribution of species richness and phylogenetic diversity at fine spatial scales compared to the distribution of RNS. We identify abiotic environmental factors associated with RNS and with Fagales diversity in general.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>We find the highest species richness in temperate east Asia, eastern North America, and equatorial montane regions of Asia and Central America. By contrast, relative phylogenetic diversity (RPD) is highest at higher latitudes, where RNS also predominates. We found a strong spatial structuring of regionalisations of Fagales floras, reflecting distinct Northern and Southern Hemisphere floras (except a unique Afro-Boreal region), each with distinct RNS-environment relationships.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Main Conclusions</h3>\u0000 \u0000 <p>Although species richness and phylogenetic regionalisation for Fagales accord well with traditional biogeographic concepts for temperate forests, this is not the case for RPD. RNS is almost universal in the highest RPD regions, which may reflect ecological filtering promoting RNS in these regions. Our results highlight the utility of global-scale, clade-specific spatial phylogenetics and its utility for understanding drivers of diversity in species-rich clades.</p>\u0000 </section>\u0000 </div>","PeriodicalId":15299,"journal":{"name":"Journal of Biogeography","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jbi.14840","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alejandra Martel-Cea, Ana M. Abarzúa, Mauro E. González, Leonora Jarpa, Marjorie Hernández
{"title":"Fire–climate–human dynamics over the last 1800 years in the mesic Araucaria-Nothofagus forests","authors":"Alejandra Martel-Cea, Ana M. Abarzúa, Mauro E. González, Leonora Jarpa, Marjorie Hernández","doi":"10.1111/jbi.14839","DOIUrl":"10.1111/jbi.14839","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Aim</h3>\u0000 \u0000 <p>Few palaeoenvironmental studies have been performed in <i>Araucaria-Nothofagus</i> forests, which are highly vulnerable to ongoing threats from climate change and anthropogenic activities. The primary goal of this work is to reconstruct past environmental changes related to fire disturbances over the last 1800 years in Tolhuaca National Park (TNP), Chile.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Location</h3>\u0000 \u0000 <p>TNP, Araucanian region (38.2°S; 71.8°W), Northwestern Patagonia, Chile.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Taxa</h3>\u0000 \u0000 <p><i>Araucaria araucana</i> (Araucariaceae), <i>Nothofagus</i> spp. (Nothofagaceae).</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>We completed charcoal and pollen analyses to create two new palaeoecological records that span 1800 years. We compared the lake-based reconstruction with the available local tree-ring fire scar chronologies from the last 430 years. Using these data, we compute forest index changes, biomass burning trends and compare with estimates of archaeological radiocarbon density. We place our inferences with context of published regional palaeoclimatic proxies from the Patagonian-Andean region.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Our results showed that fire activity was higher than present between 200 and 1500 CE, with peaks around 200–400 CE and 1100–1500 CE. Periods with high fire activity are associated with reduced forest cover, as <i>Araucaria</i> declined when mixed-severity fire regime occurred for extended periods. Pollen assemblages suggested a shift from dry to wet climate conditions at 1500 CE, and from 1750 CE onward, the arrival of exotic species reflected the land-use changes related to forest clearance and transhumance practices.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Main Conclusions</h3>\u0000 \u0000 <p>The palaeoenvironmental reconstructions showed changes in vegetation, fire and climate over the past 1800 years in TNP. Wildfires have been the main disturbance process modifying the vegetation structure in the <i>Araucaria</i> and <i>Nothofagus</i> forests. Since 1750 CE intensive post-Hispanic land-use changes (forest clearances by fire and logging) took place in the study area, reducing the native vegetation cover. Climate variability, modulated by SAM-like and ENSO-like conditions, influenced the fire activity (availability and flammability of fuels), concomitantly with high archaeological density. The recent (after 2000 CE) increase of catastrophic wildfires may negatively affect the conservation strateg","PeriodicalId":15299,"journal":{"name":"Journal of Biogeography","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Felipe Ennes Silva, Leilton Willians Luna, Romina Batista, Fabio Röhe, Chrysoula Gubili, Izeni P. Farias, Tomas Hrbek, João Valsecchi, Camila C. Ribas, Allan D. McDevitt, Simon Dellicour, Jean-François Flot, Jean P. Boubli
{"title":"Impact of Quaternary Amazonian river dynamics on the diversification of uakari monkeys (genus Cacajao)","authors":"Felipe Ennes Silva, Leilton Willians Luna, Romina Batista, Fabio Röhe, Chrysoula Gubili, Izeni P. Farias, Tomas Hrbek, João Valsecchi, Camila C. Ribas, Allan D. McDevitt, Simon Dellicour, Jean-François Flot, Jean P. Boubli","doi":"10.1111/jbi.14844","DOIUrl":"10.1111/jbi.14844","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Aim</h3>\u0000 \u0000 <p>The central and western Amazonia underwent several landscape changes during the Quaternary. Whereas the Riverine Barrier Hypothesis is traditionally used to explain the influence of rivers on speciation, processes such as river rearrangements have been overlooked to explain the geographic distribution and evolutionary history of Amazonia biota. Here, we tested how river rearrangements influenced the evolutionary history of uakari monkeys, genus <i>Cacajao</i>, a primate genus primarily associated with seasonally flooded forests in central and western Amazonia.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Location</h3>\u0000 \u0000 <p>Central and Western Amazonia.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Taxon</h3>\u0000 \u0000 <p>The genus <i>Cacajao</i>, including the black uakaris (<i>C. melanocephalus</i>, <i>C. ayresi</i>, <i>C. hosomi</i>); and the bald-headed uakaris (<i>C. calvus</i>, <i>C. amuna</i>, <i>C. rubicundus</i>, <i>C. ucayalii</i>, <i>C. novaesi</i>).</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>We performed a continuous phylogeographic analysis using 77 cytochrome <i>b</i> sequences to identify the origin and dispersal of <i>Cacajao</i> lineages. We used genome-wide SNP variation (ddRADseq) to investigate population structure, gene flow and demographic history in <i>Cacajao</i> populations and used digital elevation models to identify landscape and riverscape characteristics that may have influenced the geographic distribution of <i>Cacajao</i>.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Our continuous phylogeographic reconstruction pointed out that the ancestral <i>Cacajao</i> lineage occupied the flooded forests of the Solimões River, in central Amazonia, at ~1.7 Mya and descendant lineages dispersed throughout central and western Amazonia more recently. We identified gene flow in both black and bald-headed uakari populations, even across rivers considered barriers (e.g. the Negro River). Landscape analysis showed that river rearrangements influenced the geographic distribution and population structure in <i>Cacajao</i>. Historical demographic analyses suggest varied scenarios of population size changes among <i>Cacajao</i> monkeys consistent with periods of intense dynamism in flooded habitats and the formation of non-flooded upland forests.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Main Conclusion</h3>\u0000 \u0000 <p>Our results support that the river rearrangements have shaped the geographic distribution and divergence of recently diverged <i>Cacajao</i> lineages. Landscape and riversca","PeriodicalId":15299,"journal":{"name":"Journal of Biogeography","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ubirajara Oliveira, Fernanda Azevedo, Alan Dias, Ana Carolina Sousa de Almeida, André R. Senna, Antonio C. Marques, Dafinny Rezende, Eduardo Hajdu, Erick Alves Pereira Lopes-Filho, Fábio Bettini Pitombo, Gabriela Moura de Oliveira, João Gabriel Doria, João Luís Carraro, Joel Campos De-Paula, Juliana Bahia, Juliana Magalhães de Araujo, Karla Paresque, Leandro Manzoni Vieira, Luanny Martins Fernandes, Micaele Niobe Martins Cardoso, Luciano N. Santos, Lucília Souza Miranda, Michelle Klautau, Paulo Roberto Pagliosa, Pedro Henrique Braga Clerier, Rafael B. de Moura, Rafael da Rocha Fortes, Raquel A. F. Neves, Rosana Moreira da Rocha, Sérgio N. Stampar, Sula Salani, Thaís Pires Miranda, Ulisses Pinheiro, Virág Venekey
{"title":"Beta diversity and regionalization of the western Atlantic marine biota","authors":"Ubirajara Oliveira, Fernanda Azevedo, Alan Dias, Ana Carolina Sousa de Almeida, André R. Senna, Antonio C. Marques, Dafinny Rezende, Eduardo Hajdu, Erick Alves Pereira Lopes-Filho, Fábio Bettini Pitombo, Gabriela Moura de Oliveira, João Gabriel Doria, João Luís Carraro, Joel Campos De-Paula, Juliana Bahia, Juliana Magalhães de Araujo, Karla Paresque, Leandro Manzoni Vieira, Luanny Martins Fernandes, Micaele Niobe Martins Cardoso, Luciano N. Santos, Lucília Souza Miranda, Michelle Klautau, Paulo Roberto Pagliosa, Pedro Henrique Braga Clerier, Rafael B. de Moura, Rafael da Rocha Fortes, Raquel A. F. Neves, Rosana Moreira da Rocha, Sérgio N. Stampar, Sula Salani, Thaís Pires Miranda, Ulisses Pinheiro, Virág Venekey","doi":"10.1111/jbi.14837","DOIUrl":"10.1111/jbi.14837","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Aim</h3>\u0000 \u0000 <p>Understanding the factors determining marine community variations is important for biogeography and conservation. Beta diversity is a metric for mapping species composition variations between communities and regionalizing biota. Ecoregions are commonly used for regionalization, but their empirical testing has been limited. Our aim is to map marine species composition variations in the Western Atlantic, identify variables related to these variations, and regionalize areas based on community distribution. Additionally, we test whether currently proposed ecoregions represent unique biota units and specific environmental conditions.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Location</h3>\u0000 \u0000 <p>Western Atlantic Ocean.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Taxon</h3>\u0000 \u0000 <p>Vertebrates, invertebrates and algae.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>We constructed a large marine biodiversity database, including vertebrates, invertebrates, and algae, totalling over 4 million records. We used the generalized dissimilarity model (GDM) to identify variables most related to species composition variations and map beta-diversity variations. We employed an unsupervised classifier for community regionalization. To test if the ecoregion regionalization boundaries are corroborated by species distribution data, we used the Sørensen index. To assess if ecoregions correspond to environmental units, we checked if areas had distinct environmental conditions using a PCA of 134 marine environmental variables.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>The GDM explained a high variation in species composition, 61% in the complete database. Analysing vertebrates, invertebrates and algae separately also yielded relatively high results: 46%, 54%, and 33%, respectively. Coastal areas differed from open sea areas in composition. Environmental variables combined better explained beta diversity than isolated variables. The regionalization based on GDM was not congruent with ecoregion boundaries. Moreover, ecoregions showed no distinction in species composition or environmental conditions.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Main Conclusions</h3>\u0000 \u0000 <p>This study's regionalization is crucial for marine biodiversity conservation, focusing on understanding species composition patterns between coastal and open sea areas to develop tailored conservation strategies. Despite sampling limitations, the study advances marine biogeography knowledge by analysing over 4 million species records and 134 environ","PeriodicalId":15299,"journal":{"name":"Journal of Biogeography","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Priscila Silveira, Fernanda Gonçalves de Sousa, Philipp Böning, Natan M. Maciel, Juliana Stropp, Stefan Lötters
{"title":"Do aposematic species have larger range sizes? A case study with neotropical poison frogs","authors":"Priscila Silveira, Fernanda Gonçalves de Sousa, Philipp Böning, Natan M. Maciel, Juliana Stropp, Stefan Lötters","doi":"10.1111/jbi.14843","DOIUrl":"10.1111/jbi.14843","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Aim</h3>\u0000 \u0000 <p>Aposematic animals, i.e., those that are defended and warn potential predators through signals, are suggested to have resource-gathering advantages against non-aposematic ones. We here explore this in a biogeographic framework expecting that aposematic species are better dispersers, which translates into larger geographic range size.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Location</h3>\u0000 \u0000 <p>South America.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Taxon</h3>\u0000 \u0000 <p>Poison frogs (Amphibia; Aromobatidae and Dendrobatidae).</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>We use 43 toxic and 26 non-toxic poison frog species from the lowlands only as representatives of aposematic and non-aposematic study organisms, respectively. Realised and potential geographic ranges are calculated using minimum convex polygon and species distribution modelling methods, respectively. Accounting for species body size and phylogeny, we test if both range and aposematism are correlated using linear mixed-effects models.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Aposematic and non-aposematic species neither differ in realised nor in potential geographic range size. There was no effect on body size.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Main Conclusions</h3>\u0000 \u0000 <p>The role of aposematism is not yet as clear as suggested and determinants of poison frog range sizes are multifaceted. A more integrative approach is needed using the information on behaviour, predation risk, and reproductive biology to assess the role of aposematism on observed species distributions. Such data are not yet available for most species, neither poison frogs nor other aposematic animals.</p>\u0000 </section>\u0000 </div>","PeriodicalId":15299,"journal":{"name":"Journal of Biogeography","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jbi.14843","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
David J. Kelly, Darren P. O'Connell, Fionn Ó Marcaigh, Seán B. A. Kelly, Adi Karya, Kangkuso Analuddin, Nicola Marples
{"title":"Rolling with the punches—How competition shapes the morphology of small passerines on small islands","authors":"David J. Kelly, Darren P. O'Connell, Fionn Ó Marcaigh, Seán B. A. Kelly, Adi Karya, Kangkuso Analuddin, Nicola Marples","doi":"10.1111/jbi.14838","DOIUrl":"10.1111/jbi.14838","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Aim</h3>\u0000 \u0000 <p>Wallacea is a global biodiversity hotspot and Sulawesi is the largest island in this region, notable for a high proportion of endemic species. The Wakatobi archipelago, off the southeastern peninsular arm of Sulawesi, is home to several endemic bird species. Although islands are known to influence the morphology of their resident species, competitive interactions also exert strong influences on morphology. Here, we consider the contributions of both islands and competitors on two morphological traits of two bird species in a small passerine guild found on the Wakatobi islands.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Location</h3>\u0000 \u0000 <p>Wakatobi archipelago, Sulawesi Tenggara, Indonesia.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Taxon</h3>\u0000 \u0000 <p>Wakatobi White-eye (<i>Zosterops flavissimus</i>) and Wakatobi Sunbird (<i>Cinnyris infrenatus</i>).</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>Working with morphological measures (from netting studies), population density metrics (from transect surveys) and fundamental data from islands (area, distance from mainland and elevation), we investigated (by means of multiple linear regression) which terms best explained variation in the body size and bill size of two small passerine birds endemic to the Wakatobi islands.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Both island metrics and competitor presence/density were useful in describing the variation in body size of both bird species. However, only competitor presence/density was useful in describing variation in bill size of the birds. The best models describing variation in these traits included terms representing both interspecific and intraspecific competition.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Main Conclusions</h3>\u0000 \u0000 <p>Our findings indicate that simple island metrics may be useful in predicting some of the variation in some functional traits of island species. However, in this example, simple island metrics were insufficient to explain the full variation in body size of endemic birds across the Wakatobi archipelago and were of no use in predicting the variation in their bill size. As bill morphology frequently dictates diet and feeding niche, it is a trait which may determine population divergence and speciation. If simple island metrics fail to describe such diversification, it is surely important to capture that information in other ways.</p>\u0000 ","PeriodicalId":15299,"journal":{"name":"Journal of Biogeography","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jbi.14838","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eduardo Vinícius da Silva Oliveira, Myrna Friederichs Landim, Sidney F. Gouveia
{"title":"Multiple aspects of tree beta diversity in coastal ecosystems in Brazil","authors":"Eduardo Vinícius da Silva Oliveira, Myrna Friederichs Landim, Sidney F. Gouveia","doi":"10.1111/jbi.14842","DOIUrl":"10.1111/jbi.14842","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Aim</h3>\u0000 \u0000 <p>Patterns of beta diversity reflect the formation dynamics of ecological communities. Here, we integrated geographic, phylogenetic, and phenotypic information of coastal woody vegetation to investigate (1) whether the observed dissimilarity between assemblages differs from that expected by chance, examining the roles of spatial and deterministic processes; (2) the relative contribution of beta-diversity components (turnover and nestedness) for taxonomic, phylogenetic, and functional beta diversity; and (3) what environmental factors drive the differences in composition between assemblages for all these dimensions.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Location</h3>\u0000 \u0000 <p>Brazil.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Taxon</h3>\u0000 \u0000 <p>Angiosperm trees.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>We built dissimilarity matrices and partitioned the taxonomic, phylogenetic, and functional beta diversity from an incidence matrix, a phylogeny including the region's plants, and a matrix expressing functional distances. Using linear regressions, we tested the effects of different environmental predictors representative of the effects of water availability, thermal energy, habitat heterogeneity, edaphic constraints, climatic stability, and human influence on beta-diversity patterns.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Taxonomic, phylogenetic, and functional dissimilarities exhibited a typical pattern of greater dissimilarity with distance (i.e., as expected by chance). However, these patterns showed different contributions of beta-diversity components, predominating turnover in taxonomic and phylogenetic dissimilarity, and nestedness in functional dissimilarity. Water availability had a slight effect on patterns of taxonomic and phylogenetic dissimilarities.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Main conclusions</h3>\u0000 \u0000 <p>The Brazilian coastal woody vegetation appears to have emerged through a dynamic of colonisation of evolutionarily distinct but functionally similar lineages that originated from adjacent phytogeographic domains, proportional to their diversity. This is consistent with a combination of both neutral and non-neutral processes. Our findings underscore the complementary roles of different dimensions of beta diversity in explaining the dynamics of these vegetation communities.</p>\u0000 </section>\u0000 </div>","PeriodicalId":15299,"journal":{"name":"Journal of Biogeography","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The role of dispersal limitation in the forest biome shifts of Europe in the last 18,000 years","authors":"Deborah Zani, Heike Lischke, Veiko Lehsten","doi":"10.1111/jbi.14836","DOIUrl":"10.1111/jbi.14836","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Aim</h3>\u0000 \u0000 <p>How the ability of plants to move towards newly favourable habitats (dispersal limitation) impacts the change of biome distribution and transition under fast climate warming is still debated. Analysing vegetation change in the past may help to clarify the relative importance of underlying ecological processes such as climate, biotic interactions, and dispersal. In this study, we investigated how dispersal limitation affected the distribution of European forests in the last 18,000 years.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Location</h3>\u0000 \u0000 <p>Southern and Central Europe.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Taxon</h3>\u0000 \u0000 <p>Spermatophyta.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>Using the LPJ-GM 2.0 model (an extension of LPJ-GUESS), we simulated European vegetation from the end of the Last Glacial Maximum (18.5 ka) to the current time (0 ka). Using biome reconstructions from pollen data as reference, we compared the performance of two dispersal modes: with no migration constraints or seed limitation (free dispersal mode), and with plant establishment depending on seed dynamics and dispersal (dispersal limitation mode).</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>The model run, including migration processes, was better at capturing the post-glacial expansion of European temperate forests (and the longer persistence of boreal forests) than the setting assuming free dispersal, especially during periods of rapid warming. This suggests that a number of (temperate) tree taxa experienced delayed occupancy of climatically suitable habitats due to a limited dispersal capacity, i.e., post-glacial migration lags.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Main Conclusions</h3>\u0000 \u0000 <p>Our results show that including migration processes in model simulations allows for more realistic reconstructions of forest patterns under rapid climate change, with consequences for future projections of carbon sequestration and climate reconstructions with vegetation feedback, assisted migration and forest conservation.</p>\u0000 </section>\u0000 </div>","PeriodicalId":15299,"journal":{"name":"Journal of Biogeography","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jbi.14836","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140314140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cover","authors":"","doi":"10.1111/jbi.14644","DOIUrl":"https://doi.org/10.1111/jbi.14644","url":null,"abstract":"<p>On the cover: <i>Pocillopora</i> aff. <i>meandrina</i> is a species of hard coral acting as one of the main reef builders in the southwestern Indian Ocean. Photo credit: Lionel Bigot. \u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":15299,"journal":{"name":"Journal of Biogeography","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jbi.14644","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140145743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hong Qian, Michael Kessler, Jian Zhang, Yi Jin, Meichen Jiang
{"title":"Evolutionary causes of global patterns of species richness in regional fern floras across the world","authors":"Hong Qian, Michael Kessler, Jian Zhang, Yi Jin, Meichen Jiang","doi":"10.1111/jbi.14835","DOIUrl":"10.1111/jbi.14835","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Aim</h3>\u0000 \u0000 <p>Globally, biodiversity is unevenly distributed, as a result of varying environmental conditions and regionally different historical processes. The influence of the latter on current diversity patterns is poorly understood. We explore geographic patterns of matches and mismatches between phylogenetic relatedness metrics measuring different depths of evolutionary history and investigate the effects of evolutionary legacy at different evolutionary depths on species density of ferns.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>We divided the globe into 392 geographic regions on land, and collated species lists of ferns for each geographic region. We related species richness to phylogenetic metrics reflecting different depths of evolutionary history (standardized effect sizes of mean nearest taxon distance and mean pairwise distance, MNTD<sub>ses</sub> and MPD<sub>ses</sub>, respectively) for ferns in regional floras across the world.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Location</h3>\u0000 \u0000 <p>Global.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Time Period</h3>\u0000 \u0000 <p>Current.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Taxon</h3>\u0000 \u0000 <p>Ferns.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>We show that different centers of fern diversity have strikingly different phylogenetic composition. We find that overall fern species diversity is negatively correlated with both MNTD<sub>ses</sub> and MPD<sub>ses</sub>, so that regions with high species diversity tend to have clustered species assemblages, whereas species-poor regions tend to have overdispersed species assemblages. At the global extent, MNTD<sub>ses</sub> and MPD<sub>ses</sub> together explained 62.2%, 19.3%, and 65.7% of the variation in species diversity for all ferns as a whole, non-polypod ferns, and polypods, respectively.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Main Conclusions</h3>\u0000 \u0000 <p>Our study suggests that current geographic patterns of fern species richness are driven, at least in part, by evolutionary history of ferns, which varies among biogeographic regions.</p>\u0000 </section>\u0000 </div>","PeriodicalId":15299,"journal":{"name":"Journal of Biogeography","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140173211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}