Journal of bioscience and bioengineering最新文献

筛选
英文 中文
Characterization and application of Lachancea thermotolerans isolates for sake brewing. 用于清酒酿造的 Lachancea thermotolerans 分离物的特征和应用。
IF 2.3 4区 生物学
Journal of bioscience and bioengineering Pub Date : 2025-01-01 Epub Date: 2024-11-02 DOI: 10.1016/j.jbiosc.2024.10.004
Miyu Nakatani, Rina Ohtani, Kiwamu Umezawa, Taiyo Uchise, Yoshifumi Matsuo, Yasuhisa Fukuta, Eri Obata, Aruma Katabuchi, Kento Kizaki, Hana Kitazume, Masataka Ohashi, Katsuki Johzuka, Atsushi Kurata, Koichi Uegaki
{"title":"Characterization and application of Lachancea thermotolerans isolates for sake brewing.","authors":"Miyu Nakatani, Rina Ohtani, Kiwamu Umezawa, Taiyo Uchise, Yoshifumi Matsuo, Yasuhisa Fukuta, Eri Obata, Aruma Katabuchi, Kento Kizaki, Hana Kitazume, Masataka Ohashi, Katsuki Johzuka, Atsushi Kurata, Koichi Uegaki","doi":"10.1016/j.jbiosc.2024.10.004","DOIUrl":"10.1016/j.jbiosc.2024.10.004","url":null,"abstract":"<p><p>Non-conventional yeasts are increasingly being used in the production of fermented beverages owing to their ability to create unique and high-quality products. The yeast Lachancea thermotolerans is of great industrial significance, particularly in the production of l(+)-lactic acid, which is beneficial for acidifying wine, beer, and potentially sake. To explore its potential in sake brewing, three L. thermotolerans strains were isolated from natural environments and their physiological and fermentative characteristics were examined. The isolates surpassed the L. thermotolerans type strain (NBRC 1985) in lactic acid production under various culture conditions and exhibited comparable growth rates to that of Saccharomyces cerevisiae at 15-20 °C. Sake brewing tests using these isolates yielded approximately 3500 ppm of lactic acid, with a slightly lower production of aroma components compared to that produced by sake yeast, and an ethanol content of approximately 11-12 % was obtained. Reverse transcription-quantitative polymerase chain reaction revealed variable expression in putative lactate dehydrogenase genes depending on the culture conditions. Our findings suggest that L. thermotolerans strains can be used in sake brewing to produce unique sake.</p>","PeriodicalId":15199,"journal":{"name":"Journal of bioscience and bioengineering","volume":" ","pages":"30-35"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142568685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioconversion of eicosapentaenoic acid into 5S,15S- and 5R,15R-dihydroxyeicosapentaenoic acids by double-dioxygenating 15S- and 15R-lipoxygenases. 通过 15S- 和 15R- 脂氧合酶将二十碳五烯酸生物转化为 5S、15S- 和 5R、15R- 二羟基二十碳五烯酸。
IF 2.3 4区 生物学
Journal of bioscience and bioengineering Pub Date : 2025-01-01 Epub Date: 2024-10-15 DOI: 10.1016/j.jbiosc.2024.09.002
Jin Lee, Hyun-Ah Park, Kyung-Chul Shin, Deok-Kun Oh
{"title":"Bioconversion of eicosapentaenoic acid into 5S,15S- and 5R,15R-dihydroxyeicosapentaenoic acids by double-dioxygenating 15S- and 15R-lipoxygenases.","authors":"Jin Lee, Hyun-Ah Park, Kyung-Chul Shin, Deok-Kun Oh","doi":"10.1016/j.jbiosc.2024.09.002","DOIUrl":"10.1016/j.jbiosc.2024.09.002","url":null,"abstract":"<p><p>Resolvin E series (Rvs), such as RvE4 (5S,15S-dihydroxyeicosapentaenoic acid) and its stereoselective enantiomer (5R,15R-dihydroxyeicosapentaenoic acid), play an important role in promoting the resolution of inflammation and are derived from eicosapentaenoic acid (EPA) by M2 macrophage in human. However, they have been synthesized using expensive and inefficient chemical methods. Here, we performed efficient quantitative production of RvE4 and its enantiomer from EPA using Escherichia coli expressing double-dioxygenating 15S-lipoxygenase (15S-LOX) from Archangium violaceum and double-dioxygenating 15R-LOX from Sorangium cellulosum, respectively, with solvent, polymer, and adsorbent resin. The cell density, substrate concentration, solvent types and concentrations, polymer types and concentrations, and resin concentration were optimized for the enhanced bioconversion of EPA into RvE4 and its enantiomer. Under the optimized conditions, A. violaceum 15S-LOX and S. cellulosum 15R-LOX expressed in E. coli converted 6.0 mM EPA into 4.3 mM (1.44 g/L) RvE4 and 5.8 mM (1.94 g/L) RvE4 enantiomer in 60 min, with productivities of 4.3 and 5.8 mM/h and molar conversions of 72% and 97%, respectively. To date, these are the highest concentrations, productivities, and conversions of RvE4 and its enantiomer. The concentrations of RvE4 and its enantiomer obtained from the conversion of EPA with solvent, polymer, and resin were 2.5- and 3.2-fold higher than those without the additives, respectively.</p>","PeriodicalId":15199,"journal":{"name":"Journal of bioscience and bioengineering","volume":" ","pages":"1-6"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142466296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aromatic residues in the oligonucleotide binding domain are essential to the function of the single-stranded DNA binding protein of Helicobacter pylori. 寡核苷酸结合域中的芳香残基对幽门螺旋杆菌单链 DNA 结合蛋白的功能至关重要。
IF 2.3 4区 生物学
Journal of bioscience and bioengineering Pub Date : 2025-01-01 Epub Date: 2024-10-26 DOI: 10.1016/j.jbiosc.2024.09.003
Mon-Juan Lee, Li-Kun Huang, Wen-Hsin Huang, Po-Yu Chan, Zi-Sin Yang, Ching-Ming Chien, Ching-Chang Chieng, Haimei Huang
{"title":"Aromatic residues in the oligonucleotide binding domain are essential to the function of the single-stranded DNA binding protein of Helicobacter pylori.","authors":"Mon-Juan Lee, Li-Kun Huang, Wen-Hsin Huang, Po-Yu Chan, Zi-Sin Yang, Ching-Ming Chien, Ching-Chang Chieng, Haimei Huang","doi":"10.1016/j.jbiosc.2024.09.003","DOIUrl":"10.1016/j.jbiosc.2024.09.003","url":null,"abstract":"<p><p>Single-stranded DNA-binding protein (SSB) is essential to DNA replication, DNA repair, and homologous genetic recombination. Our previous study on the crystal structure of a C-terminally truncated SSB from Helicobacter pylori, HpSSBc, in complex with single-stranded DNA (ssDNA) suggests that several aromatic residues, including Phe37, Phe50, Phe56, and Trp84, were involved in ssDNA binding. To investigate the importance of these aromatic residues, the binding activity of four site-directed HpSSB mutants, including F37A HpSSB, F50A HpSSB, F56A HpSSB, and W84A HpSSB, was compared to that of wild-type HpSSB and HpSSBc by means of electrophoresis mobility shift assay (EMSA), tryptophan quenching fluorescence titration, and surface plasmon resonance (SPR). Molecular docking and molecular dynamic (MD) simulation of a F37A and a quadruple mutation model of HpSSBc support that the ssDNA-HpSSBc complex was destabilized when either one or four of the aromatic residues were mutated. The findings of this study suggest that mutation of the phenylalanine and tryptophan residues within the oligonucleotide-binding domain significantly diminished the ssDNA binding capability of HpSSB, highlighting the crucial role these aromatic residues play in the binding of ssDNA by HpSSB.</p>","PeriodicalId":15199,"journal":{"name":"Journal of bioscience and bioengineering","volume":" ","pages":"7-13"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142568681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Positive impact of pyrocarbon and mechanical loading on cartilage-like tissue synthesis in a scaffold-free process. 在无支架工艺中,热碳和机械负载对软骨样组织合成的积极影响。
IF 2.3 4区 生物学
Journal of bioscience and bioengineering Pub Date : 2025-01-01 Epub Date: 2024-10-11 DOI: 10.1016/j.jbiosc.2024.09.005
Imbert De Gaudemaris, Amira Hannoun, Rémy Gauthier, Nina Attik, Leyre Brizuela, Saida Mebarek, Michel Hassler, Carole Bougault, Ana-Maria Trunfio-Sfarghiu
{"title":"Positive impact of pyrocarbon and mechanical loading on cartilage-like tissue synthesis in a scaffold-free process.","authors":"Imbert De Gaudemaris, Amira Hannoun, Rémy Gauthier, Nina Attik, Leyre Brizuela, Saida Mebarek, Michel Hassler, Carole Bougault, Ana-Maria Trunfio-Sfarghiu","doi":"10.1016/j.jbiosc.2024.09.005","DOIUrl":"10.1016/j.jbiosc.2024.09.005","url":null,"abstract":"<p><p>Aiming to build a tissue analogue engineered cartilage from differentiated chondrocytes, we investigated the potential of a pyrocarbon (PyC)-based and scaffold-free process, under mechanical stimulation. PyC biomaterial has shown promise in arthroplasty and implant strategies, and mechanical stimulation is recognized as an improvement in regeneration strategies. The objective was to maintain the cell phenotype to produce constructs with cartilage-like matrix composition and mechanical properties. Primary murine chondrocytes were deposited in drop form between two biomaterial surfaces expanded to 500 μm and a uniaxial cyclic compression was applied thanks to a handmade tribo-bioreactor (0.5 Hz, 100 μm of amplitude, 17 days). Histology and immunohistochemistry analysis showed that PyC biomaterial promoted expression of cartilage-like matrix components (glycosaminoglycans, type II collagen, aggrecan). Importantly, constructs obtained in dynamic conditions were denser and showed a cohesive and compact shape. The most promising condition was the combined use of PyC and dynamic stimulation, resulting in constructs of low elasticity and high viscosity, thus with an increased damping factor. We verified that no calcium deposits were detectable and that type X collagen was not expressed, suggesting that the cells had not undergone hypertrophic maturation. While most studies focus on the comparison of different biomaterials or on the effect of different mechanical stimuli separately, we demonstrated the value of combining the two approaches to get as close as possible to the biological and mechanical qualities of natural hyaline articular cartilage.</p>","PeriodicalId":15199,"journal":{"name":"Journal of bioscience and bioengineering","volume":" ","pages":"53-59"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142466308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular mechanisms of complex-type N-glycan breakdown and metabolism by the human intestinal bacterium Barnesiella intestinihominis. 人类肠道细菌 Barnesiella intestinihominis 分解和代谢复合型 N-糖的分子机制。
IF 2.3 4区 生物学
Journal of bioscience and bioengineering Pub Date : 2025-01-01 Epub Date: 2024-11-07 DOI: 10.1016/j.jbiosc.2024.10.006
Kanako Doi, Kazuki Mori, Misaki Komatsu, Akari Shinoda, Kosuke Tashiro, Yujiro Higuchi, Jiro Nakayama, Kaoru Takegawa
{"title":"Molecular mechanisms of complex-type N-glycan breakdown and metabolism by the human intestinal bacterium Barnesiella intestinihominis.","authors":"Kanako Doi, Kazuki Mori, Misaki Komatsu, Akari Shinoda, Kosuke Tashiro, Yujiro Higuchi, Jiro Nakayama, Kaoru Takegawa","doi":"10.1016/j.jbiosc.2024.10.006","DOIUrl":"10.1016/j.jbiosc.2024.10.006","url":null,"abstract":"<p><p>Intestinal bacteria play a crucial role in human health, for example, by maintaining immune and metabolic homeostasis and protecting against pathogens. Survival in the human intestine depends on the bacterium's ability to utilize complex carbohydrates. Some species are known to use host-derived glycans; for example, Bifidobacteria can utilize O-glycan of mucin. However, there are few studies on intestinal bacteria utilizing host-derived N-glycan. Here, we identified the mechanism underlying the breakdown and utilization of complex-type N-glycan by the human intestinal bacterium Barnesiella intestinihominis. A growth assay showed that B. intestinihominis can utilize complex-type N-glycan as a carbon source, while RNA-seq analysis identified enzymes and transporters involved in the mechanism of N-glycan breakdown. In particular, the expression of three genes encoding glycoside hydrolase 85 endo-β-N-acetylglucosaminidase (endo-BIN1, endo-BIN2, and endo-BIN3) rose markedly in bacterial cells cultured in complex-type N-glycoprotein medium. We also found that the susC and susD genes, encoding the SusC/SusD membrane complex, form a gene cluster with endo-BIN genes, suggesting that SusC/SusD is involved in transportation of the glycan into the cell. Other genes encoding exo-type glycoside hydrolase enzymes showed elevated expression in cells grown in complex-type N-glycoprotein medium, suggesting that these enzymes function in further degradation of glycan for metabolism by the bacterium. Collectively, these findings suggest the survival strategy of an intestinal bacterium that has a unique metabolic pathway to use host-derived complex-type N-glycan as a nutrient.</p>","PeriodicalId":15199,"journal":{"name":"Journal of bioscience and bioengineering","volume":" ","pages":"14-22"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142604889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of induced pluripotent stem cell differentiation into neural progenitor cell using Raman spectra derived from extracellular vesicles in culture supernatants. 利用培养上清液中细胞外囊泡的拉曼光谱评估诱导多能干细胞向神经祖细胞分化的情况。
IF 2.3 4区 生物学
Journal of bioscience and bioengineering Pub Date : 2025-01-01 Epub Date: 2024-10-16 DOI: 10.1016/j.jbiosc.2024.09.004
Kakuro Hirai, Hikaru Saito, Midori Kato, Masaharu Kiyama, Hiroko Hanzawa, Atsushi Nakane, Sayaka Sekiya, Kenji Yoshida, Akiyoshi Kishino, Atsushi Ikeda, Toru Kimura, Jun Takahashi, Shizu Takeda
{"title":"Evaluation of induced pluripotent stem cell differentiation into neural progenitor cell using Raman spectra derived from extracellular vesicles in culture supernatants.","authors":"Kakuro Hirai, Hikaru Saito, Midori Kato, Masaharu Kiyama, Hiroko Hanzawa, Atsushi Nakane, Sayaka Sekiya, Kenji Yoshida, Akiyoshi Kishino, Atsushi Ikeda, Toru Kimura, Jun Takahashi, Shizu Takeda","doi":"10.1016/j.jbiosc.2024.09.004","DOIUrl":"10.1016/j.jbiosc.2024.09.004","url":null,"abstract":"<p><p>Non-invasive cell culture monitoring technology is crucial to improve the manufacturing efficiency of cell products. We have found that extracellular vesicles (EVs) are secreted into the culture supernatants in the differentiation process from human induced pluripotent stem cells (iPSCs) to dopaminergic progenitor cells, and that the composition of EVs changes in accordance with the differentiation processes. In this study, we hypothesized that it is possible to evaluate the cultured cellular states by detecting compositional changes of EVs secreted from cultured cells with label-free Raman spectroscopy in a non-invasive manner. Therefore, Raman signal analysis derived from EV fractions isolated from culture supernatants throughout the differentiation process was conducted. iPSCs cultures were simultaneously implemented under a standard condition (control) and an artificial deviation condition inducing reductions in pluripotency by depleting FGF2 in culture medium (-FGF2), which is indispensable for maintaining the pluripotency. Subsequently, the differentiation step was conducted for each iPSCs culture under the same condition. As a result, it was found that under -FGF2, the expression level of the pluripotency marker NANOG decreased compared to that of the control and correlated with the identification results based on Raman signals with a correlation coefficient of 0.77. Lipid-derived Raman signals were extracted as identification factors, suggesting that changes in the lipid component of EV occur depending on the cellular states. From the above, we have found that the change in composition of EVs in the culture supernatant by detecting Raman signals would be a monitoring index of the cellular state of differentiation and pluripotency.</p>","PeriodicalId":15199,"journal":{"name":"Journal of bioscience and bioengineering","volume":" ","pages":"44-52"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142466297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mass spectrometry imaging of gamma-aminobutyric acid and glutamic acid decarboxylase reactions at various stages of banana ripening. 香蕉成熟不同阶段γ-氨基丁酸和谷氨酸脱羧酶反应的质谱成像。
IF 2.3 4区 生物学
Journal of bioscience and bioengineering Pub Date : 2025-01-01 Epub Date: 2024-10-31 DOI: 10.1016/j.jbiosc.2024.10.001
Shiho Ishimoto, Eiichiro Fukusaki, Shuichi Shimma
{"title":"Mass spectrometry imaging of gamma-aminobutyric acid and glutamic acid decarboxylase reactions at various stages of banana ripening.","authors":"Shiho Ishimoto, Eiichiro Fukusaki, Shuichi Shimma","doi":"10.1016/j.jbiosc.2024.10.001","DOIUrl":"10.1016/j.jbiosc.2024.10.001","url":null,"abstract":"<p><p>Banana is the fourth most consumed crop worldwide, and its high economic value and health benefits have made it very popular. Bananas are climacteric fruits that ripen after harvesting. It has been reported that the endogenous substances in bananas change significantly during the ripening process. This study focused on levels of gamma-aminobutyric acid (GABA) and glutamic acid decarboxylase (GAD), an enzyme that catalyzes the synthesis of GABA, which reportedly fluctuates during the ripening stage. Previous studies have shown that GAD expression is associated with banana ripening; however, changes in its distribution during ripening have not been verified. This study aimed to clarify the relationship between GABA and GAD during ripening of ethylene-treated bananas. Visualization of the localization of endogenous GABA and GAD was performed using mass spectrometry imaging. To visualize GAD reaction, a glutamate-d<sub>3</sub> (labeled substrate) was supplied to the sample, and a GABA-d<sub>3</sub> (labeled product) was regarded as the localization of the enzymatic reaction. Liquid chromatography-mass spectrometry was also used to confirm the amount of GABA and activity of the GAD. This will allow us to clarify the direct relationship between GABA and GAD and to understand the role of the GAD reaction in phytohormones.</p>","PeriodicalId":15199,"journal":{"name":"Journal of bioscience and bioengineering","volume":" ","pages":"79-84"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142557905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plasma-activated medium suppresses proliferation and migration of human lung cancer cells by regulating PI3K/AKT-Wnt signaling pathway. 血浆活化培养基通过调节 PI3K/AKT-Wnt 信号通路抑制人肺癌细胞的增殖和迁移
IF 2.3 4区 生物学
Journal of bioscience and bioengineering Pub Date : 2025-01-01 Epub Date: 2024-11-07 DOI: 10.1016/j.jbiosc.2024.10.002
Zhidan Sun, Chenglong Ding, Yuhan Wang, Han Zhou, Wencheng Song
{"title":"Plasma-activated medium suppresses proliferation and migration of human lung cancer cells by regulating PI3K/AKT-Wnt signaling pathway.","authors":"Zhidan Sun, Chenglong Ding, Yuhan Wang, Han Zhou, Wencheng Song","doi":"10.1016/j.jbiosc.2024.10.002","DOIUrl":"10.1016/j.jbiosc.2024.10.002","url":null,"abstract":"<p><p>The main causes of high mortality in lung cancer patients are the malignant growth and migration of cancer cells. This study aims to investigate the underlying mechanisms of low-temperature plasma-activated medium (PAM) treating human lung cancer (HLC). Changes in the levels of reactive oxygen and nitrogen species both inside and outside the cells were evaluated. Our results showed that prolonged PAM exposure decreased cell viability, raised intracellular reactive oxygen species levels, and hindered cell migration while reducing mitochondrial membrane potential. Protein analysis revealed PAM increased GSK-3β and p-β-catenin expression but decreased PI3K, AKT, p-AKT, p-GSK-3β, Wnt, and β-catenin levels, thereby inhibiting the epithelial-mesenchymal transition. These findings suggest PAM suppresses HLC cells proliferation and migration by blocking the PI3K/AKT-Wnt pathway. The study will provide a valuable theoretical basis for future low-temperature plasma treatment, thereby improving the survival rates and prognosis of lung cancer.</p>","PeriodicalId":15199,"journal":{"name":"Journal of bioscience and bioengineering","volume":" ","pages":"60-69"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142621139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of a low acetate-producing strain of Tetragenococcus halophilus to soy sauce fermentation. 在酱油发酵中应用嗜卤四源球菌低醋酸盐菌株。
IF 2.3 4区 生物学
Journal of bioscience and bioengineering Pub Date : 2025-01-01 Epub Date: 2024-10-18 DOI: 10.1016/j.jbiosc.2024.09.007
Keita Higuchi, Yuya Nukagawa, Takura Wakinaka, Jun Watanabe, Yoshinobu Mogi
{"title":"Application of a low acetate-producing strain of Tetragenococcus halophilus to soy sauce fermentation.","authors":"Keita Higuchi, Yuya Nukagawa, Takura Wakinaka, Jun Watanabe, Yoshinobu Mogi","doi":"10.1016/j.jbiosc.2024.09.007","DOIUrl":"10.1016/j.jbiosc.2024.09.007","url":null,"abstract":"<p><p>In soy sauce brewing, the halophilic lactic acid bacterium, Tetragenococcus halophilus is used as a fermentation starter and contributes to the taste and aroma of soy sauce, mainly by producing lactate. By lowering the pH of the soy sauce mash, lactate serves as a suitable growth environment for the halotolerant yeast Zygosaccharomyces rouxii. Acetate, which is produced by T. halophilus via the citrate metabolic pathway, is a critical growth inhibitory factor for Z. rouxii. Therefore, a T. halophilus strain that lacks acetate production could be an ideal fermentation starter to enhance ethanol production. In this study, we obtained a derivative of T. halophilus containing an insertion sequence in citC, which is an essential gene for citrate metabolism, and validated its performance as a soy sauce fermentation starter. The derivative neither metabolized citrate nor produced excessive acetate in soy sauce mash, resulting in vigorous alcohol fermentation by Z. rouxii. This study provides insights into the application of a low acetate-producing strain of T. halophilus as a starter to produce soy sauce with high alcohol content and low sour aroma.</p>","PeriodicalId":15199,"journal":{"name":"Journal of bioscience and bioengineering","volume":" ","pages":"23-29"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142466295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Amphiphilic phospholipid polymers as a cryoprotectant for vitrification and nanowarming of rat livers. 两亲磷脂聚合物作为玻璃化和纳米加热大鼠肝脏的低温保护剂
IF 2.3 4区 生物学
Journal of bioscience and bioengineering Pub Date : 2025-01-01 Epub Date: 2024-10-24 DOI: 10.1016/j.jbiosc.2024.10.003
Masahiro Kaneko, Natsumi Takizawa, Taisei Wakabayashi, Hidenori Kaneoka, Akira Ito
{"title":"Amphiphilic phospholipid polymers as a cryoprotectant for vitrification and nanowarming of rat livers.","authors":"Masahiro Kaneko, Natsumi Takizawa, Taisei Wakabayashi, Hidenori Kaneoka, Akira Ito","doi":"10.1016/j.jbiosc.2024.10.003","DOIUrl":"10.1016/j.jbiosc.2024.10.003","url":null,"abstract":"<p><p>Liver biobanking is a promising approach that saves the lives of patients with end-stage liver disease. Cryopreservation based on vitrification enables semi-permanent organ preservation, contributing to overcome the shortage of donors for liver transplants. A technical challenge in cryopreservation of transplantable organs lies in thawing methodology, and conventional convective warming cannot maintain the glassy state during thawing because of the large temperature gradient between the inner and outer parts of the organs, leading to ice formation and damage of cells in the organ. Nanowarming, in which magnetic nanoparticles are dispersed in a vitrification solution and heated by exposure of alternating magnetic field, can achieve uniform and rapid heating of organs. Herein, we report that amphiphilic phospholipid polymers composed of 2-methacryloyloxyethyl phosphorylcholine and n-butyl methacrylate can function as a cryoprotectant for nanowarming. The amphiphilic phospholipid polymers enhanced the viability of primary rat hepatocytes after vitrification. Moreover, the polymers enhanced the dispersion stability of magnetic nanoparticles in vitrification solution, and the perfusion of the vitrification solution with magnetic nanoparticles into rat livers through portal vein provided uniform distribution of the nanoparticles in the liver. After perfusion, the vitrified liver was successfully thawed rapidly and uniformly by nanowarming, which maintained tissue integrity and cell viability.</p>","PeriodicalId":15199,"journal":{"name":"Journal of bioscience and bioengineering","volume":" ","pages":"70-78"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信