采用鲨鱼-人嵌合和不对称格式设计双特异性抗体Fc区。

IF 2.9 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Ryota Munetomo, Aiko Inoue, Masayoshi Onitsuka
{"title":"采用鲨鱼-人嵌合和不对称格式设计双特异性抗体Fc区。","authors":"Ryota Munetomo, Aiko Inoue, Masayoshi Onitsuka","doi":"10.1016/j.jbiosc.2025.09.001","DOIUrl":null,"url":null,"abstract":"<p><p>Bispecific antibodies (BsAbs) can bind to two antigens simultaneously and have undergone rapid advancements in recent years owing to their ability to enable novel mechanisms of action that are unachievable using conventional monoclonal antibodies (mAbs). However, the structural complexity of BsAbs remains a problem during product development. One of these problems is the presence of impurities and by-products. Although BsAbs with the human Fc region must be assembled using heterogeneous polypeptide chains, undesired by-products from unpaired and mispaired chain components can contaminate them. These by-products are difficult to remove in the purification process because their physicochemical properties resemble those of the target BsAb with correct pairing. Here, we designed a novel Fc region for enhanced BsAbs in which the human CH2 domain on one side of the Fc region was replaced with the C2 domain from an immunoglobulin new antigen receptor (IgNAR) shark antibody. The designed BsAbs with chimeric and asymmetric Fcs exhibited separate pH elution profiles against soluble aggregates in protein A affinity chromatography. An overlapping elution profile corresponding to the by-product homogeneous chain observed in human Fc BsAbs was not detected in shark C2-introduced BsAbs. Although another homogeneous by-product was observed in the designed BsAb, introducing N-glycosylation at C2 significantly improved this problem. Additionally, BsAbs with the designed Fc demonstrated higher stability in both the colloidal and structural aspects. This study is the first approach for the chimeric and asymmetric design of Fc using a shark-derived constant domain and offers a novel alternative for BsAb development.</p>","PeriodicalId":15199,"journal":{"name":"Journal of bioscience and bioengineering","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of bispecific antibody Fc region employing a shark-human chimeric and asymmetric format.\",\"authors\":\"Ryota Munetomo, Aiko Inoue, Masayoshi Onitsuka\",\"doi\":\"10.1016/j.jbiosc.2025.09.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bispecific antibodies (BsAbs) can bind to two antigens simultaneously and have undergone rapid advancements in recent years owing to their ability to enable novel mechanisms of action that are unachievable using conventional monoclonal antibodies (mAbs). However, the structural complexity of BsAbs remains a problem during product development. One of these problems is the presence of impurities and by-products. Although BsAbs with the human Fc region must be assembled using heterogeneous polypeptide chains, undesired by-products from unpaired and mispaired chain components can contaminate them. These by-products are difficult to remove in the purification process because their physicochemical properties resemble those of the target BsAb with correct pairing. Here, we designed a novel Fc region for enhanced BsAbs in which the human CH2 domain on one side of the Fc region was replaced with the C2 domain from an immunoglobulin new antigen receptor (IgNAR) shark antibody. The designed BsAbs with chimeric and asymmetric Fcs exhibited separate pH elution profiles against soluble aggregates in protein A affinity chromatography. An overlapping elution profile corresponding to the by-product homogeneous chain observed in human Fc BsAbs was not detected in shark C2-introduced BsAbs. Although another homogeneous by-product was observed in the designed BsAb, introducing N-glycosylation at C2 significantly improved this problem. Additionally, BsAbs with the designed Fc demonstrated higher stability in both the colloidal and structural aspects. This study is the first approach for the chimeric and asymmetric design of Fc using a shark-derived constant domain and offers a novel alternative for BsAb development.</p>\",\"PeriodicalId\":15199,\"journal\":{\"name\":\"Journal of bioscience and bioengineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of bioscience and bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jbiosc.2025.09.001\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of bioscience and bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jbiosc.2025.09.001","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

双特异性抗体(BsAbs)可以同时结合两种抗原,近年来取得了快速进展,因为它们能够实现传统单克隆抗体(mab)无法实现的新作用机制。然而,在产品开发过程中,bsab结构的复杂性仍然是一个问题。其中一个问题是杂质和副产品的存在。虽然具有人类Fc区的bsab必须使用异质多肽链进行组装,但来自未配对和错配链成分的不希望的副产物会污染它们。这些副产物在纯化过程中很难去除,因为它们的物理化学性质与正确配对的目标BsAb相似。在这里,我们设计了一个新的Fc区域用于增强bsab,其中Fc区域一侧的人CH2结构域被免疫球蛋白新抗原受体(IgNAR)鲨鱼抗体的C2结构域取代。在蛋白A亲和层析中,嵌合Fcs和不对称Fcs的bsab对可溶性聚集体表现出不同的pH洗脱谱。与在人类Fc bsab中观察到的副产物均相链相对应的重叠洗脱谱在鲨鱼c2引入的bsab中未检测到。虽然在设计的BsAb中观察到另一个均匀的副产物,但在C2处引入n -糖基化显着改善了这个问题。此外,具有设计Fc的bsab在胶体和结构方面都表现出更高的稳定性。该研究首次采用鲨鱼衍生的恒定结构域进行Fc嵌合和非对称设计,为BsAb的开发提供了一种新的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of bispecific antibody Fc region employing a shark-human chimeric and asymmetric format.

Bispecific antibodies (BsAbs) can bind to two antigens simultaneously and have undergone rapid advancements in recent years owing to their ability to enable novel mechanisms of action that are unachievable using conventional monoclonal antibodies (mAbs). However, the structural complexity of BsAbs remains a problem during product development. One of these problems is the presence of impurities and by-products. Although BsAbs with the human Fc region must be assembled using heterogeneous polypeptide chains, undesired by-products from unpaired and mispaired chain components can contaminate them. These by-products are difficult to remove in the purification process because their physicochemical properties resemble those of the target BsAb with correct pairing. Here, we designed a novel Fc region for enhanced BsAbs in which the human CH2 domain on one side of the Fc region was replaced with the C2 domain from an immunoglobulin new antigen receptor (IgNAR) shark antibody. The designed BsAbs with chimeric and asymmetric Fcs exhibited separate pH elution profiles against soluble aggregates in protein A affinity chromatography. An overlapping elution profile corresponding to the by-product homogeneous chain observed in human Fc BsAbs was not detected in shark C2-introduced BsAbs. Although another homogeneous by-product was observed in the designed BsAb, introducing N-glycosylation at C2 significantly improved this problem. Additionally, BsAbs with the designed Fc demonstrated higher stability in both the colloidal and structural aspects. This study is the first approach for the chimeric and asymmetric design of Fc using a shark-derived constant domain and offers a novel alternative for BsAb development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of bioscience and bioengineering
Journal of bioscience and bioengineering 生物-生物工程与应用微生物
CiteScore
5.90
自引率
3.60%
发文量
144
审稿时长
51 days
期刊介绍: The Journal of Bioscience and Bioengineering is a research journal publishing original full-length research papers, reviews, and Letters to the Editor. The Journal is devoted to the advancement and dissemination of knowledge concerning fermentation technology, biochemical engineering, food technology and microbiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信