{"title":"Calendula officinalis extract-loaded conduits improved sciatic nerve injury repair through upregulation of BDNF and GFAP","authors":"Feng Xu, GuiBin Su","doi":"10.1177/08839115241258150","DOIUrl":"https://doi.org/10.1177/08839115241258150","url":null,"abstract":"In the current research, the nanofibrous neural channels were produced by electrospinning of PCL/Gelatin solution loaded with Calendula officinalis extract. The produced scaffolds properties were studied using various in vitro characterization methods. Then, the conduits’ healing potential was investigated in a rat model of PNS injury. In vitro results showed that scaffolds were not toxic and quenched DPPH free radicals. In addition, the extract-loaded conduits exhibited significant anti-inflammatory activity. In vivo study showed that the regular treadmill exercise significantly improved the healing efficacy of the Calendula officinalis-delivering conduits by upregulating BDNF and GFAP proteins.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":"24 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141549317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synthesis and characterization of amine functionalized cellulose nanogel for transdermal drug delivery","authors":"Antoniyar Arockia Raj, Subramanian Sundaramoorthy","doi":"10.1177/08839115241261421","DOIUrl":"https://doi.org/10.1177/08839115241261421","url":null,"abstract":"This study presents the synthesis and characterization of an amine-functionalized cellulose nanogel (AFCNG) for potential biomedical applications. AFCNG is synthesized using a combination of acid hydrolysis, TEMPO oxidation, and EDC/NHS-mediated coupling via amide linkage. Biodegradable AFCNG is formulated with a mean size of 74 nm through a regeneration process. The characterization of AFCNG is performed using various techniques such as FTIR spectroscopy, XRD, XPS, Zeta potential, DLS, HRSEM, and TGA. The result reveals that the anionic AFCNG is amorphous, highly stable in colloidal form, and has a higher degradation temperature and water absorption capacity. Biodegradation of AFCNG is also assessed by incubating it with lysozyme for 5 weeks, which results in a degradation level of 83%. There is negligible hemolytic activity and less cytotoxicity toward 3T3 cells induced by the AFCNG. The model drug, curcumin, is effectively loaded on AFCNG, which is highly released at an acidic pH by using the Franz diffusion method. The anionic ligand-based CAFCNG is effectively conjugated with the cationic folic acid receptors on the surface of B16-F10 cell lines through receptor-mediated endocytosis. The resulting CAFCNG shows notable cytotoxicity to B16-F10 cells. The results imply that CAFCNG is a suitable candidate for the treatment of skin cancers by using an effective transdermal drug carrier.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":"38 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141549319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tribute","authors":"Kathryn Uhrich","doi":"10.1177/08839115241260096","DOIUrl":"https://doi.org/10.1177/08839115241260096","url":null,"abstract":"","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":"24 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141549318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohd Ibnu Haikal Ahmad Sohaimy, Muhammad Amir Amzar Ismail, Azwani Sofia Ahmad Khiar, Norizah Mhd Sarbon, Nora Salina Md Salim, Hanis Nadia Yahya, Mohd Ikmar Nizam Mohamad Isa
{"title":"Development of cellulose-based films containing salicylic acid for wound dressing applications: Fabrication, properties and in vitro assessment","authors":"Mohd Ibnu Haikal Ahmad Sohaimy, Muhammad Amir Amzar Ismail, Azwani Sofia Ahmad Khiar, Norizah Mhd Sarbon, Nora Salina Md Salim, Hanis Nadia Yahya, Mohd Ikmar Nizam Mohamad Isa","doi":"10.1177/08839115241253560","DOIUrl":"https://doi.org/10.1177/08839115241253560","url":null,"abstract":"A wound dressing is important to ensure an efficient healing process while protecting the wound area. This research study combined 2-hydroxyethyl cellulose (2HEC)—an etherified cellulose derivative with salicylic acid (SA) to develop a single layer and investigate the 2HEC viability as wound dressing material. Nine different samples with different compositions of SA, from 5 wt.% to 40 wt.% (with an interval of 5 wt.%) and one control sample without adding SA were prepared via the solution casting method. The 2HEC-SA films were studied regarding the effects of SA composition on antimicrobial properties ( Staphylococcus aureus) via the well-diffusion method. Additionally, degradability, mechanical properties, X-ray diffraction (XRD), and Fourier transform infrared (FTIR) of 2HEC-SA films have also been tested. The strongest antimicrobial effect of 2HEC-SA film was obtained at 40 wt.% with a 16 mm inhibition zone diameter. There was a noticeable decreasing weight loss pattern in the degradation test and the tensile strength of 2HEC-SA film when the composition of salicylic acid is increased. 2HEC-SA film changes phases from amorphous to crystalline starting at 25 wt.% of salicylic acid as seen through XRD, while FTIR shows that complexation of 2HEC and salicylic acid occurred at 1050 cm<jats:sup>−1</jats:sup>.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":"88 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141194328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Adamu Biruk Fentahun, Gao Jing, Yuan Xiangnan, Tan Shaojie
{"title":"Indigenous Ethiopian traditional medicinal plant leaf extract, Croton macrostachyus, loaded PCL electrospun nanofibrous mat as potential wound dressing: In vitro analysis","authors":"Adamu Biruk Fentahun, Gao Jing, Yuan Xiangnan, Tan Shaojie","doi":"10.1177/08839115241256950","DOIUrl":"https://doi.org/10.1177/08839115241256950","url":null,"abstract":"The main aim of this study was to investigate the potential application of an indiginous Ethiopian medicinal plant, Croton macrostachyus, into PCL nanofibers through electrospinning for the first time. Croton macrostachyus (CM) leaf has antibacterial and wound healing properties. Croton macrostachyus of 1%, 3%, 5%, and 7% (w/v) incorporated PCL nanofibrous mats were produced through electrospinning. The produced nanofibrous mats morphology observed by scanning electron microscopy (SEM) was found to be continuous, bead-free, and interconnected. The average diameters of PCL, PCL-1%CM, PCL-3%CM, PCL-5%CM, and PCL-7%CM nanofibrous mat is 309 ± 114, 271 ± 66, 235 ± 56, 226 ± 65, and 216 ± 42 nm, respectively. According to the FTIR results, the CM leaf extract was successfully incorporated into the PCL nanofibers. The bacterial reduction percentage value of PCL-1%CM, PCL-3%CM, PCL-5%CM, and PCL-7%CM nanofiber mats against S. aureus is 77.00%, 99.88%, 99.91%, and 99.99%, and 35.00%, 78.00%, 90.00%, and 99.30% against E. coli. The in vitro release study showed that there was an immediate release of CM within 24 h and then a steady sustained release of 51.36, 53.92, 54.99, and 57.12% up to 72 h at 1%, 3%, 5%, and 7% concentration, respectively. The presence of CM leaf extract in the PCL nanofiber increased the hydrophilicity of the pure PCL nanofiber (100% hydrophilic at 7% leaf extract concentration). In general, the results of the in vitro study confirmed that the PCL nanofibrous mats loaded with CM leaf extract are suitable for use as an effective wound dressing with a broad spectrum of antimicrobial activity and hydrophilic properties.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":"22 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141151493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hydrogels in biosensing and medical diagnostics","authors":"Hossein Omidian, Sumana Dey Chowdhury, Arnavaz Akhzarmehr","doi":"10.1177/08839115241253260","DOIUrl":"https://doi.org/10.1177/08839115241253260","url":null,"abstract":"This article presents an in-depth examination of recent advancements in medical and biotechnological sensing technologies, focusing on the forefront of innovation in hydrogel-based sensors within the domains of biomedical engineering and regenerative medicine. It delves into cutting-edge sensing technologies that facilitate non-invasive glucose monitoring, highlights progress in the development of intelligent solutions for wound care, and discusses the application of optical and fluorescence-based sensors for real-time diagnostics within the body. Further, it reviews the latest glucose monitoring devices, alongside wearable and implantable sensors designed for the continuous monitoring of health, including the measurement of physiological strain and stress. The exploration extends to the latest in non-invasive and minimally invasive technologies for ongoing health assessment, and to imaging and visualization techniques critical for medical diagnostics and therapeutic procedures. These advancements mark a pivotal move toward more efficient, precise, and patient-focused healthcare technologies, signaling new avenues for diagnosis, monitoring, and treatment in the healthcare sector.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":"71 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140926199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yinsen Song, Sisen Zhang, Tianli Fan, Zhenzhen Yang, Peiliang Li, Lu Zhang, Na Gao, Wei Mei
{"title":"Exploring the efficacy of catha edulis extract-loaded nanofibrous scaffolds seeded with bone marrow-derived stem cells for diabetic wound healing: A preclinical investigation","authors":"Yinsen Song, Sisen Zhang, Tianli Fan, Zhenzhen Yang, Peiliang Li, Lu Zhang, Na Gao, Wei Mei","doi":"10.1177/08839115241248190","DOIUrl":"https://doi.org/10.1177/08839115241248190","url":null,"abstract":"Objectives:The aim of this study was to investigate the potential of incorporating catha edulis extract into polycaprolacton/gelatin scaffolds using electrospinning technique for the treatment of diabetic wounds in a rat model.Methods:The in vitro characterization of the scaffolds was performed using various assays, including anti-inflammatory assay, microstructure study, DPPH radical scavenging assay, cell viability assay, hemocompatibility assay, and bacterial penetration assays. The scaffolds were then seeded with bone marrow-derived stem cells and cultured before implantation into the rat model.Results:The results of the in vitro study showed that the produced scaffolds were nanofibrous, antioxidative, and non-toxic to skin cells. In vivo study demonstrated that the stem cell and catha edulis extract-loaded scaffolds had the highest rate of wound closure and histomorphometric parameters compared to other groups. Moreover, gene expression studies showed that the developed wound dressings increased the expression of VEGF gene and reduced the expression of glutathione peroxidase gene.Conclusion:These findings suggest that the catha edulis extract-loaded polycaprolacton/gelatin scaffolds could be a promising therapeutic option for diabetic wounds.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":"52 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140803022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jinglong Liu, Wei Zhou, Shuo Yang, Ruixue Chu, Yuqi Zhen, Rui Ding, Juan Xu, Zhiyong Qian, Ning Wen
{"title":"Biocompatible sodium alginate–silk fibroin antibacterial microspheres from a microfluidic platform for infected wound repair","authors":"Jinglong Liu, Wei Zhou, Shuo Yang, Ruixue Chu, Yuqi Zhen, Rui Ding, Juan Xu, Zhiyong Qian, Ning Wen","doi":"10.1177/08839115241241294","DOIUrl":"https://doi.org/10.1177/08839115241241294","url":null,"abstract":"Micro/nano drug delivery systems can provide ideal controlled drug release. Microfluidic chip technology plays an important role in the preparation of microspheres. Sodium alginate (SA) has been used to prepare microspheres as drug carriers owing to its good biosafety and easy preparation. However, these microspheres lack antimicrobial activity and drug loading efficiency, which prevent their application for infected wound repair. Although silver nanoparticles (AgNPs) possess broad-spectrum antibiotic activity, liquid mixtures of AgNPs and SA are too unstable to fabricate drug-loaded microspheres using microfluidic chip technology. In this study, AgNPs were coated with silk fibroin (SF) and then dispersed in SA solution to fabricate antibacterial microspheres (denoted SA-SF-Ag) using microfluidic chip technology. SA-SF-Ag effectively inhibited the growth of microorganisms and gradually released AgNPs. Moreover, in vivo results showed that SA-SF-Ag promoted infected wound healing and angiogenesis by killing Pseudomonas aeruginosa on the surface of infected skin wounds of mouse models. This study offers a new method to integrate AgNPs into organic polymeric microspheres for the treatment of infected wounds.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":"50 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140585829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tovi Shapira-Furman, Abraham Nyska, Abraham J Domb
{"title":"Biocompatibility of insulin-PLA stereocomplex","authors":"Tovi Shapira-Furman, Abraham Nyska, Abraham J Domb","doi":"10.1177/08839115241241047","DOIUrl":"https://doi.org/10.1177/08839115241241047","url":null,"abstract":"Biocompatibility is essential for drug delivery systems to ensure safety. Poly(lactic acid) (PLA) and its copolymers with glycolic acid and caprolactone, are known as safe biodegradable implants and carriers of drugs in clinical use. These polymers have been clinically used for the delivery of peptides, such as: LHRH, somatostatin and growth hormone. While the safety of PLA has been confirmed, the biocompatibility of PLA- based stereocomplexes with peptides has not been investigated. Stereocomplex is a complex formed by two molecules with opposite enantiomeric configuration. D-PLA consists of a chiral monomer thus can adopts a three dimensional structure which is a mirror image of a helix structure, therefore, complexes with insulin into a stereocomplex. In previous reports we demonstrated the formation of such stereocomplex. This study presents the safety evolution of a stereocomplex composed of the water soluble diblock copolymer of D-polylactic acid-co-polyetheylene glycol (DPLA-PEG) and Insulin, following subcutaneous administration of 17 mg sterecomoplex/mouse to Akita<jats:sup>−/+ins2</jats:sup> mice. The mice were monitored for blood glucose levels and weight along the experiment, while growth necropsy and histopathology examination were done post sacrificing. Results demonstrated normal body weight gain with no pathological finding of an internal organ and no inflammatory signs at the injection site except of minimal macrophages, after 16 weeks following polymer administration. Hence, Stereocomplex of D-PLA-PEG/insulin is considered biocompatible with no adversity.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":"47 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140585959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fabrication and evaluation of cross-linked nanogels of Dexibuprofen","authors":"Azka Ikram, Ikrima Khalid, Ikram Ullah Khan, Kashif Barkat, Waqas Ahmad, Haroon Khaild Syed, Ayesha Jamshed","doi":"10.1177/08839115231223962","DOIUrl":"https://doi.org/10.1177/08839115231223962","url":null,"abstract":"The objective of this study was to design and develop an Agarose-based polymeric nanogel network system for solubility enhancement of a lipophilic drug, Dexibuprofen. Polymeric nanogels were synthesized through free radical polymerization where Agarose was cross-linked with 2-Acrylamido-2-methylpropane sulfonic acid (AMPS) in the presence of ammonium persulfate (APS) as an initiator and N, N’-Methylenebisacrylamide (MBA) as crosslinking agent. The resulting polymeric nanogels underwent a comprehensive characterization process including Fourier transform infrared (FTIR), particle size analysis, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), powder X-ray diffraction (PXRD), and swelling studies to confirm the preparation of a stable polymeric nanogel system. FTIR spectral findings revealed that Agarose was chemically cross-linked with AMPS and confirmed the successful insertion of AMPS chains on the Agarose backbone. Particle size analysis revealed a diameter of 168 nm with a zeta potential of −9.91 mV, providing assurance of a stable polymeric nanogel system. SEM images depicted a highly porous surface. DSC and TGA results showed a more thermally stable network system than individual ingredients. Swelling studies revealed an increased swelling ratio of polymeric nanogels at phosphate buffer of pH 6.8 than acidic buffer of pH 1.2. Dexibuprofen was efficiently loaded into a polymeric nanogel system with a high entrapment efficiency of up to 80%. The solubility of the drug was enhanced when introduced to a polymeric nanogel formulation when compared to pure drug. The system reproducibility was evaluated through in vitro drug release and kinetic modeling of drug release. Toxicity studies confirmed the formulation’s effectiveness, showcasing the developed polymeric nanogels as a promising option for delivering lipophilic drugs, with outstanding physicochemical properties, improved solubility, and minimal oral toxicity.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":"70 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140172320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}