Mohd Ibnu Haikal Ahmad Sohaimy, Muhammad Amir Amzar Ismail, Azwani Sofia Ahmad Khiar, Norizah Mhd Sarbon, Nora Salina Md Salim, Hanis Nadia Yahya, Mohd Ikmar Nizam Mohamad Isa
{"title":"Development of cellulose-based films containing salicylic acid for wound dressing applications: Fabrication, properties and in vitro assessment","authors":"Mohd Ibnu Haikal Ahmad Sohaimy, Muhammad Amir Amzar Ismail, Azwani Sofia Ahmad Khiar, Norizah Mhd Sarbon, Nora Salina Md Salim, Hanis Nadia Yahya, Mohd Ikmar Nizam Mohamad Isa","doi":"10.1177/08839115241253560","DOIUrl":null,"url":null,"abstract":"A wound dressing is important to ensure an efficient healing process while protecting the wound area. This research study combined 2-hydroxyethyl cellulose (2HEC)—an etherified cellulose derivative with salicylic acid (SA) to develop a single layer and investigate the 2HEC viability as wound dressing material. Nine different samples with different compositions of SA, from 5 wt.% to 40 wt.% (with an interval of 5 wt.%) and one control sample without adding SA were prepared via the solution casting method. The 2HEC-SA films were studied regarding the effects of SA composition on antimicrobial properties ( Staphylococcus aureus) via the well-diffusion method. Additionally, degradability, mechanical properties, X-ray diffraction (XRD), and Fourier transform infrared (FTIR) of 2HEC-SA films have also been tested. The strongest antimicrobial effect of 2HEC-SA film was obtained at 40 wt.% with a 16 mm inhibition zone diameter. There was a noticeable decreasing weight loss pattern in the degradation test and the tensile strength of 2HEC-SA film when the composition of salicylic acid is increased. 2HEC-SA film changes phases from amorphous to crystalline starting at 25 wt.% of salicylic acid as seen through XRD, while FTIR shows that complexation of 2HEC and salicylic acid occurred at 1050 cm<jats:sup>−1</jats:sup>.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":"88 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioactive and Compatible Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08839115241253560","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A wound dressing is important to ensure an efficient healing process while protecting the wound area. This research study combined 2-hydroxyethyl cellulose (2HEC)—an etherified cellulose derivative with salicylic acid (SA) to develop a single layer and investigate the 2HEC viability as wound dressing material. Nine different samples with different compositions of SA, from 5 wt.% to 40 wt.% (with an interval of 5 wt.%) and one control sample without adding SA were prepared via the solution casting method. The 2HEC-SA films were studied regarding the effects of SA composition on antimicrobial properties ( Staphylococcus aureus) via the well-diffusion method. Additionally, degradability, mechanical properties, X-ray diffraction (XRD), and Fourier transform infrared (FTIR) of 2HEC-SA films have also been tested. The strongest antimicrobial effect of 2HEC-SA film was obtained at 40 wt.% with a 16 mm inhibition zone diameter. There was a noticeable decreasing weight loss pattern in the degradation test and the tensile strength of 2HEC-SA film when the composition of salicylic acid is increased. 2HEC-SA film changes phases from amorphous to crystalline starting at 25 wt.% of salicylic acid as seen through XRD, while FTIR shows that complexation of 2HEC and salicylic acid occurred at 1050 cm−1.
期刊介绍:
The use and importance of biomedical polymers, especially in pharmacology, is growing rapidly. The Journal of Bioactive and Compatible Polymers is a fully peer-reviewed scholarly journal that provides biomedical polymer scientists and researchers with new information on important advances in this field. Examples of specific areas of interest to the journal include: polymeric drugs and drug design; polymeric functionalization and structures related to biological activity or compatibility; natural polymer modification to achieve specific biological activity or compatibility; enzyme modelling by polymers; membranes for biological use; liposome stabilization and cell modeling. This journal is a member of the Committee on Publication Ethics (COPE).