{"title":"Effects of Phosphoryl Oligosaccharides of Calcium (POs-Ca) on Mycelial Growth and Fruiting Body Development of the Edible Mushroom, <i>Pleurotus ostreatus</i>.","authors":"Daisuke Suzuki, Yuko Sato, Hiroshi Kamasaka, Takashi Kuriki","doi":"10.5458/jag.jag.JAG-2020_0001","DOIUrl":"10.5458/jag.jag.JAG-2020_0001","url":null,"abstract":"<p><p>Phosphoryl oligosaccharides of calcium (POs-Ca) is a calcium salt of phosphoryl maltooligosaccharides made from potato starch. POs-Ca is highly water-soluble and can supply both the calcium ion and acidic oligosaccharides in an aqueous solution. In this study, we investigated the effects of POs-Ca on the mycelial growth and fruiting body yield of <i>Pleurotus ostreatus</i> , which is one of the most widely cultivated edible mushrooms in the world. We cultivated the mushroom using both potato dextrose agar (PDA) medium and sawdust-based medium, with added calcium salts. The addition of POs-Ca into the PDA medium with a calcium concentration of 10 mg increased mycelial growth significantly ( <i>p</i> < 0.05, <i>vs</i> . control). POs-Ca addition to the sawdust-based medium at concentrations of 1.0 to 3.0 g/100 g medium increased the amount of calcium in the fruiting bodies but did not affect the length of the cultivation period or the weight of the fruiting body. The calcium content in the fruiting body increased 12-fold when compared to the control. On the other hand, neither the CaHPO <sub>4</sub> ・2H <sub>2</sub> O group nor the CaHPO <sub>4</sub> ・2H <sub>2</sub> O with oligosaccharides group showed changes in the calcium content of the fruiting bodies. Our results indicate that the use of POs-Ca in mushroom cultivation allows for the possibility of developing new functional foods like calcium-enriched edible mushrooms. This is the first report describing the effects of POs-Ca on mushroom cultivation.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2020-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ca/52/JAG-67-067.PMC8155663.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39282085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of C-6 Methylol Groups on Substrate Recognition of Glucose/Xylose Mixed Oligosaccharides by Cellobiose Dehydrogenase from the Basidiomycete <i>Phanerochaete chrysosporium</i>.","authors":"Kiyohiko Igarashi, Satoshi Kaneko, Motomitsu Kitaoka, Masahiro Samejima","doi":"10.5458/jag.jag.JAG-2020_0003","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2020_0003","url":null,"abstract":"<p><p>Cellobiose dehydrogenase (CDH) is a flavocytochrome catalyzing oxidation of the reducing end of cellobiose and cellooligosaccharides, and has a key role in the degradation of cellulosic biomass by filamentous fungi. Here, we use a lineup of glucose/xylose-mixed β-1,4-linked disaccharides and trisaccharides, enzymatically synthesized by means of the reverse reaction of cellobiose phosphorylase and cellodextrin phosphorylase, to investigate the substrate recognition of CDH. We found that CDH utilizes β-D-xylopyranosyl-(1→4)-D-glucopyranose (Xyl-Glc) as an electron donor with similar <i>K</i> <sub>m</sub> and <i>k</i> <sub>cat</sub> values to cellobiose. β-D-Glucopyranosyl-(1→4)-D-xylopyranose (Glc-Xyl) shows a higher <i>K</i> <sub>m</sub> value, while xylobiose does not serve as a substrate. Trisaccharides show similar behavior; i.e., trisaccharides with cellobiose and Xyl-Glc units at the reducing end show similar kinetics, while the enzyme was less active towards those with Glc-Xyl, and inactive towards those with xylobiose. We also use docking simulation to evaluate substrate recognition of the disaccharides, and we discuss possible molecular mechanisms of substrate recognition by CDH.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2020-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f0/6e/JAG-67-051.PMC8293687.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39282082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sialylated <i>O</i> -Glycans from Hen Egg White Ovomucin are Decomposed by Mucin-degrading Gut Microbes.","authors":"Hiromi Takada, Toshihiko Katoh, Takane Katayama","doi":"10.5458/jag.jag.JAG-2019_0020","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2019_0020","url":null,"abstract":"<p><p>Ovomucin, a hen egg white protein, is characterized by its hydrogel-forming properties, high molecular weight, and extensive <i>O</i> -glycosylation with a high degree of sialylation. As a commonly used food ingredient, we explored whether ovomucin has an effect on the gut microbiota. <i>O-</i> Glycan analysis revealed that ovomucin contained core-1 and 2 structures with heavy modification by <i>N</i> -acetylneuraminic acid and/or sulfate groups. Of the two mucin-degrading gut microbes we tested, <i>Akkermansia muciniphila</i> grew in medium containing ovomucin as a sole carbon source during a 24 h culture period, whereas <i>Bifidobacterium bifidum</i> did not. Both gut microbes, however, degraded ovomucin <i>O</i> -glycans and released monosaccharides into the culture supernatants in a species-dependent manner, as revealed by semi-quantified mass spectrometric analysis and anion exchange chromatography analysis. Our data suggest that ovomucin potentially affects the gut microbiota through <i>O</i> -glycan decomposition by gut microbes and degradant sugar sharing within the community.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2020-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5458/jag.jag.JAG-2019_0020","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39280646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis of Transglucosylation Products of <i>Aspergillus niger</i> α-Glucosidase that Catalyzes the Formation of α-1,2- and α-1,3-Linked Oligosaccharides.","authors":"Atsushi Kawano, Kansuke Fukui, Yuji Matsumoto, Atsushi Terada, Akihiro Tominaga, Nozomi Nikaido, Takashi Tonozuka, Kazuhide Totani, Nozomu Yasutake","doi":"10.5458/jag.jag.JAG-2019_0015","DOIUrl":"10.5458/jag.jag.JAG-2019_0015","url":null,"abstract":"<p><p>According to whole-genome sequencing, <i>Aspergillus niger</i> produces multiple enzymes of glycoside hydrolases (GH) 31. Here we focus on a GH31 α-glucosidase, AgdB, from <i>A. niger</i> . AgdB has also previously been reported as being expressed in the yeast species, <i>Pichia pastoris</i> ; while the recombinant enzyme (rAgdB) has been shown to catalyze tranglycosylation via a complex mechanism. We constructed an expression system for <i>A. niger</i> AgdB using <i>Aspergillus nidulans</i> . To better elucidate the complicated mechanism employed by AgdB for transglucosylation, we also established a method to quantify glucosidic linkages in the transglucosylation products using 2D NMR spectroscopy. Results from the enzyme activity analysis indicated that the optimum temperature was 65 °C and optimum pH range was 6.0-7.0. Further, the NMR results showed that when maltose or maltopentaose served as the substrate, α-1,2-, α-1,3-, and small amount of α-1,1-β-linked oligosaccharides are present throughout the transglucosylation products of AgdB. These results suggest that AgdB is an α-glucosidase that serves as a transglucosylase capable of effectively producing oligosaccharides with α-1,2-, α-1,3-glucosidic linkages.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2020-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/8f/6a/JAG-67-041.PMC8311119.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39280647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluation of Ammonia Pretreatment for Enzymatic Hydrolysis of Sugarcane Bagasse to Recover Xylooligosaccharides.","authors":"Sosyu Tsutsui, Kiyoshi Sakuragi, Kiyohiko Igarashi, Masahiro Samejima, Satoshi Kaneko","doi":"10.5458/jag.jag.JAG-2019_0017","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2019_0017","url":null,"abstract":"<p><p>Sugarcane bagasse is a useful biomass resource. In the present study, we examined the efficacy of ammonia pretreatment for selective release of hemicellulose from bagasse. Pretreatment of bagasse with aqueous ammonia resulted in significant loss of xylan. In contrast, pretreatment of bagasse with anhydrous ammonia resulted in almost no xylan loss. Aqueous ammonia or anhydrous ammonia-pretreated bagasse was then subjected to enzymatic digestion with a xylanase from the glycoside hydrolase (GH) family 10 or a xylanase from the GH family 11. The hydrolysis rate of xylan in bagasse pretreated with aqueous ammonia was approximately 50 %. In contrast, in the anhydrous ammonia-treated bagasse, xylan hydrolysis was > 80 %. These results suggested that anhydrous ammonia pretreatment would be an effective method for preparation of sugarcane bagasse for enzymatic hydrolysis to recover xylooligosaccharides.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2020-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5458/jag.jag.JAG-2019_0017","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39354576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"1,6-α-L-Fucosidases from <i>Bifidobacterium longum</i> subsp. <i>infantis</i> ATCC 15697 Involved in the Degradation of Core-fucosylated <i>N</i> -Glycan.","authors":"Hisashi Ashida, Taku Fujimoto, Shin Kurihara, Masayuki Nakamura, Masahiro Komeno, Yibo Huang, Takane Katayama, Takashi Kinoshita, Kaoru Takegawa","doi":"10.5458/jag.jag.JAG-2019_0016","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2019_0016","url":null,"abstract":"<p><p><i>Bifidobacterium longum</i> subsp. <i>infantis</i> ATCC 15697 possesses five α-L-fucosidases, which have been previously characterized toward fucosylated human milk oligosaccharides containing α1,2/3/4-linked fucose [Sela <i>et al.</i>: <i>Appl. Environ. Microbiol.,</i> 78, 795-803 (2012)]. In this study, two glycoside hydrolase family 29 α-L-fucosidases out of five (Blon_0426 and Blon_0248) were found to be 1,6-α-L-fucosidases acting on core α1,6-fucose on the <i>N</i>-glycan of glycoproteins. These enzymes readily hydrolyzed p-nitrophenyl-α-L-fucoside and Fucα1-6GlcNAc, but hardly hydrolyzed Fucα1-6(GlcNAcβ1-4)GlcNAc, suggesting that they de-fucosylate Fucα1-6GlcNAcβ1-Asn-peptides/proteins generated by the action of endo-β- <i>N</i>-acetylglucosaminidase. We demonstrated that Blon_0426 can de-fucosylate Fucα1-6GlcNAc-IgG prepared from Rituximab using Endo-CoM from <i>Cordyceps militaris</i>. To generate homogenous non-fucosylated <i>N</i>-glycan-containing IgG with high antibody-dependent cellular cytotoxicity (ADCC) activity, the resulting GlcNAc-IgG has a potential to be a good acceptor substrate for the glycosynthase mutant of Endo-M from <i>Mucor hiemalis</i>. Collectively, our results strongly suggest that Blon_0426 and Blon_0248 are useful for glycoprotein glycan remodeling.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2020-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/4c/1e/JAG-67-023.PMC8367633.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39354577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"<i>In Vitro</i> Utilization Characteristics of Maltobionic Acid and Its Effects on Bowel Movements in Healthy Subjects.","authors":"Ken Fukami, Daiki Suehiro, Motoko Ohnishi","doi":"10.5458/jag.jag.JAG-2019_0013","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2019_0013","url":null,"abstract":"<p><p>We examined the <i>in vitro</i> digestibility of maltobionic acid, obtained from enzymatic oxidation of maltose, its utilization by intestinal bacteria, and its biological effects on the bowel movements in healthy subjects. We found that maltobionic acid is not digested <i>in vitro</i> by saliva, gastric juice, or pancreatic juice. Moreover, it is digested only to a small extent by small intestinal enzymes. Among the 24 strains of intestinal bacteria, maltobionic acid was selectively utilized by <i>Bifidobacterium dentium</i> and <i>Bi. adolescentis</i>. We also evaluated the influence of long-term ingestion of maltobionic acid calcium salt on bowel movements in healthy Japanese women by a randomized, double-blind, placebo-controlled, crossover trial. Thirty-four subjects completed the study, and no adverse events related to the test food were observed. Ten subjects were excluded prior to the efficacy analysis because of conflict with the control criteria; the remaining 24 subjects were analyzed. Intake of test food containing 4 g maltobionic acid for 4 weeks caused a significant increase in the stool frequency, significant improvement in stool form scale and CAS-MT total scores as compared with the placebo group. These results suggest that maltobionic acid is an indigestible carbohydrate and is a promising therapeutic agent for improving the intestinal environment.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2020-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5458/jag.jag.JAG-2019_0013","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39354574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Control of pH by CO <sub>2</sub> Pressurization for Enzymatic Saccharification of Ca(OH) <sub>2</sub> -Pretreated Rice Straw in the Presence of CaCO <sub>3</sub>.","authors":"Masakazu Ike, Ken Tokuyasu","doi":"10.5458/jag.jag.JAG-2019_0019","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2019_0019","url":null,"abstract":"<p><p>The aim of this study was to investigate the effect of pH control by CO <sub>2</sub> pressurization on the enzymatic hydrolysis of herbaceous feedstock in the calcium capturing by carbonation (CaCCO) process for fermentable sugar production. The pH of the slurry of 5 % (w/w) Ca(OH) <sub>2</sub> -pretreated/CO <sub>2</sub> -neutralized rice straw could be controlled between 5.70 and 6.38 at 50 °C by changing the CO <sub>2</sub> partial pressure ( <i>p</i> CO <sub>2</sub> ) from 0.1 to 1.0 MPa. A mixture of fungal enzyme preparations, namely, <i>Trichoderma reesei</i> cellulases/hemicellulases and <i>Aspergillus niger</i> β-glucosidase, indicated that pH 5.5-6.0 is optimal for solubilizing sugars from Ca(OH) <sub>2</sub> -pretreated rice straw. Enzymatic saccharification of pretreated rice straw under various <i>p</i> CO <sub>2</sub> conditions revealed that the highest soluble sugar yields were obtained at <i>p</i> CO <sub>2</sub> 0.4 MPa and over, which is consistent with the expected pH at the <i>p</i> CO <sub>2</sub> without enzymes and demonstrates the effectiveness of pH control by CO <sub>2</sub> pressurization.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2020-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/2b/11/JAG-67-059.PMC8294032.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39282083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tomoya Shintani, Hirofumi Sakoguchi, Akihide Yoshihara, Ken Izumori, Masashi Sato
{"title":"D-Allose, a Stereoisomer of D-Glucose, Extends the Lifespan of <i>Caenorhabditis elegans</i> via Sirtuin and Insulin Signaling.","authors":"Tomoya Shintani, Hirofumi Sakoguchi, Akihide Yoshihara, Ken Izumori, Masashi Sato","doi":"10.5458/jag.jag.JAG-2019_0010","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2019_0010","url":null,"abstract":"<p><p>D-Allose (D-All), C-3 epimer of D-glucose, is a rare sugar known to suppress reactive oxygen species generation and prevent hypertension. We previously reported that D-allulose, a structural isomer of D-All, prolongs the lifespan of the nematode <i>Caenorhabditis elegans</i>. Thus, D-All was predicted to affect longevity. In this study, we provide the first empirical evidence that D-All extends the lifespan of <i>C. elegans</i>. Lifespan assays revealed that a lifespan extension was induced by 28 mM D-All. In particular, a lifespan extension of 23.8 % was achieved (<i>p</i> < 0.0001). We further revealed that the effects of D-All on lifespan were dependent on the insulin gene <i>daf-16</i> and the longevity gene <i>sir-2.1</i>, indicating a distinct mechanism from those of other hexoses, such as D-allulose, with previously reported antiaging effects.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2019-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5458/jag.jag.JAG-2019_0010","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39354573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"One Pot Cooking of Rice Grains for Preparation of Rice-Gel Samples Using a Small-Scale Viscosity Analyzer: Small-scale Rice-gel Preparation from Grains.","authors":"Junko Matsuki, Tomoko Sasaki, Koichi Yoza, Junichi Sugiyama, Hideo Maeda, Ken Tokuyasu","doi":"10.5458/jag.jag.JAG-2019_0009","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2019_0009","url":null,"abstract":"<p><p>Rice-gel prepared by the following three steps: rice grain cooking, shearing of the cooked rice, and cooling for gel formation, is expected as a novel food ingredient for modification of various food products such as bread and noodles. To meet the demand for high-throughput systems for research and developments on the new rice gels, herein we established a mini-cooking system for preparation of rice gel samples from grains using a small-scale viscosity analyzer (Rapid Visco Analyzer; RVA). Polished rice grains (4 g) were cooked with 22 mL of water in a canister, and the paddle equipped in the canister was rotated at 2,000 rpm for 30 min (80 °C was used as a representative) to shear the cooked rice. The sheared paste was cooled to 10 °C at 160 rpm, and the initial gelation property was evaluated by viscosity analysis within the RVA. Alternatively, the sheared paste was transferred to an acrylic mold and kept at 4 °C for 0, 1, 3, and 5 days for determination of the hardness with a compression test. Compressive forces required to penetrate 20 % thickness for three tested rice cultivars were measured, and the trend of the value shifts during preservation is similar to the corresponding trend obtained in 300-g grain scale laboratory tests, whereas the individual values were halved in the former. This small cooking method could offer a useful assay system for a rapid evaluation in the breeding programs and in the high-throughput screening of additives for the modification of properties.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2019-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5458/jag.jag.JAG-2019_0009","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39340483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}