{"title":"Efficient Continuous Production of Lactulose Syrup by Alkaline Isomerization Using an Organogermanium Compound.","authors":"Takae Nagasawa, Katsuyuki Sato, Takafumi Kasumi","doi":"10.5458/jag.jag.JAG-2019_0012","DOIUrl":"10.5458/jag.jag.JAG-2019_0012","url":null,"abstract":"<p><p>Lactulose, a keto-type disaccharide widely used in pharmaceuticals and functional foods, is produced by the isomerization of lactose. The organogermanium compound poly-<i>trans</i>-[(2-carboxyethyl) germasesquioxane] (Ge-132) is an effective reaction promoter for the conversion of lactose to lactulose because of its high affinity to ketoses. Herein, an effective method for the continuous production of lactulose syrup was developed using Ge-132 through the alkaline isomerization of lactose in a bench-scale plant. This plant carried out a continuous isomerization process using Ge-132, continuous two-step separation process for separating the sugar and Ge-132, a continuous purification and concentration processes for the lactulose syrup, and separation and purification processes for the recovery of Ge-132. In this bench-scale plant, lactulose-containing syrup (350 g/L lactulose, 92 g/L lactose, and 31 g/L galactose) was prepared. The syrup was produced at a rate of 37.7 mL/h, and the content of residual Ge-132 in the syrup was 2 mg/L. The separation process was a two-step separation system requiring an ordinary electrodialyzer and an electro deionizer, which allowed the separation of more than 99.6 % Ge-132 from the reaction mixture. Moreover, the majority of Ge-132 and sodium hydroxide were recovered through electrodialysis using a bipolar membrane. The proposed system is the first to represent the novel development of an effective continuous production system for lactulose-containing syrup on the basis of the use of organogermanium compounds and incorporation of the electrodialysis technology.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2019-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/61/a2/JAG-66-121.PMC8373580.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39354571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characterization of Acetylxylan Esterase from White-Rot Fungus <i>Irpex lacteus</i>.","authors":"Sangho Koh, Seika Imamura, Naoto Fujino, Masahiro Mizuno, Nobuaki Sato, Satoshi Makishima, Peter Biely, Yoshihiko Amano","doi":"10.5458/jag.jag.JAG-2019_0007","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2019_0007","url":null,"abstract":"<p><p>The carbohydrate esterase family 1 (CE1) in CAZy contains acetylxylan esterases (AXEs) and feruloyl esterases (FAEs). Here we cloned a gene coding for an AXE belonging to CE1 from <i>Irpex lacteus</i> (<i>Il</i>AXE1). <i>Il</i>AXE1 was heterologously expressed in <i>Pichia pastoris</i>, and the recombinant enzyme was purified and characterized. <i>Il</i>AXE1 hydrolyzed <i>p</i>-nitrophenyl acetate, α-naphthyl acetate and 4-methylumbelliferyl acetate, however, it did not show any activity on ethyl ferulate and methyl <i>p</i>-coumarate. We also examined the activity on partially acetylated and feruloylated xylan extracted from corncob by hydrothermal reaction. Similarly, ferulic and <i>p</i>-coumaric acids were not liberated, and acetic acid was only detected in the reaction mixture. The results indicated that <i>Il</i>AXE1 is an acetylxylan esterase actually reacted to acetyl xylan. However, since <i>Il</i>AXE1 was unable to completely release acetic acid esterifying xylopyranosyl residues, it is assumed that acetyl groups exhibiting resistance to deacetylation by <i>Il</i>AXE1 are present in corn cob xylan.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2019-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5458/jag.jag.JAG-2019_0007","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39354572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Junko Matsuki, Masahisa Wada, Tomoko Sasaki, Koichi Yoza, Ken Tokuyasu
{"title":"Purification of Branched Dextrin from Nägeli Amylodextrin by Ethanol Precipitation and Characterization of Its Aggregation Property in Methanol-Water.","authors":"Junko Matsuki, Masahisa Wada, Tomoko Sasaki, Koichi Yoza, Ken Tokuyasu","doi":"10.5458/jag.jag.JAG-2019_0006","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2019_0006","url":null,"abstract":"<p><p>Ethanol precipitation process for purification of branched dextrin (BD) in Nägeli amylodextrin from waxy rice starch was developed. Temperature and ethanol concentration for precipitation were main parameters affecting the recovery and purity of BD, and the purification condition at 4 °C and 10 % (v/v) ethanol in water was adopted. After four-time precipitation, the BD recovery was 34.6 %, whereas the purity improved from 78.5 % at the initial to 94.5 % at the four-time purified BD (BD4). BD4 mainly showed a chain length distribution between 18 to 35 with a mode length of 25, which shifted after enzymatic debranching with isoamylase to that between 9 and 20 with a mode length of 14. Each purified BD was solubilized in water, and each solution was mixed with methanol-water at 25 °C to a final methanol concentration of 16 M. The flakes of BD precipitated with 16 M methanol exhibited an A-type crystal structure by an X-ray diffraction analysis, and the speed generation of white flakes in 16 M methanol dramatically increased as the purification time increased. The effect of addition of highly branched cyclic dextrin (HBCD) or sodium tetraborate on BD aggregation in 16 M methanol was also investigated, where the former retarded aggregation but the latter had no effect on the velocity. Thus, the purified BD enables rapid characterization of aggregation of double helix structures of A-type crystal structure, and screening of compounds which could affect the phenomena for prediction of potentials in starch modification as well.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2019-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5458/jag.jag.JAG-2019_0006","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39340481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of Novel Low-Molecular-Mass Oil-gelling Agents: Synthesis and Physical Properties of 1,5-Anhydro-D-glucitol and 1,5-Anhydro-D-mannitol Protected with Saturated Linear Fatty Acids.","authors":"Takahito Kajiki, Shiro Komba","doi":"10.5458/jag.jag.JAG-2019_0011","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2019_0011","url":null,"abstract":"<p><p>We have developed a novel low-molecular-mass oil-gelling agent that is electrically neutral, has no nitrogen atoms and consists only of cyclic sugar alcohols and saturated linear fatty acids. The cyclic sugar alcohols were 1,5-anhydro-D-glucitol (1,5-AG) and 1,5-anhydro-D-mannitol (1,5-AM) derived from starch via 1,5-anhydro-D-fructose. Various saturated linear fatty acids with 10 to 18 and 22 carbon atoms were introduced into all the hydroxy groups of 1,5-AG. Various saturated linear fatty acids with 13 to 18 and 22 carbon atoms were introduced into all the hydroxy groups of 1,5-AM. Initially, the gelling ability increased as the carbon number increased, but the gelling ability decreased as the carbon number increased beyond 17 carbons. This trend was similar for both 1,5-AG and 1,5-AM. A comparison of 1,5-AG and 1,5-AM derivatives revealed that 1,5-AG derivatives had greater gelling abilities for different kinds of oils at the same fatty acid length. Further, it was confirmed by SEM observations that a three-dimensional fibrous structure was formed, and this network structure formed the gel and held the oil. Here, we report the synthesis and characteristics of a novel low-molecular-weight gelling agent and its gelation mechanism.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2019-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5458/jag.jag.JAG-2019_0011","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39340482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kiyoshi Kawai, Iyo Uneyama, Savitree Ratanasumawong, Yoshio Hagura, Ken Fukami
{"title":"Effect of Calcium Maltobionate on the Glass Transition Temperature of Model and Hand-made Hard Candies.","authors":"Kiyoshi Kawai, Iyo Uneyama, Savitree Ratanasumawong, Yoshio Hagura, Ken Fukami","doi":"10.5458/jag.jag.JAG-2019_0005","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2019_0005","url":null,"abstract":"<p><p>Glass transition temperature (<i>T</i> <sub>g</sub>) is an important parameter for the physical quality control of hard candies. In order to understand the applicability of calcium maltobionate to hard candy, effect of calcium maltobionate addition on the <i>T</i> <sub>g</sub> of model and hand-made hard candies was investigated. Freeze-dried calcium maltobionate-sugar (sucrose containing a small amount of glucose-fructose mixture) and calcium maltobionate-reduced isomaltulose mixtures were prepared as model candies, and their anhydrous <i>T</i> <sub>g</sub> was evaluated using a differential scanning calorimetry. The anhydrous <i>T</i> <sub>g</sub> increased linearly with the molar fraction of calcium maltobionate. From these results, it was expected that calcium maltobionate can improve the physical stability of normal and sugarless candies. For comparison, various commercial candies were employed, and their <i>T</i> <sub>g</sub> was evaluated using a thermal rheological analysis. The <i>T</i> <sub>g</sub> values were in the range of 28-49 °C. The <i>T</i> <sub>g</sub> values were higher than 25 °C, which is significant with respect to the physical stability of the candies. Calcium maltobionate-sugar and calcium maltobionate-reduced isomaltulose candies were prepared as hand-made candies. The calcium maltobionate-reduced isomaltulose candies had higher <i>T</i> <sub>g</sub> than the calcium maltobionate-sugar candies at each calcium maltobionate content, although reduced isomaltulose has a lower <i>T</i> <sub>g</sub> than sugar. At a high calcium maltobionate content, calcium maltobionate-reduced isomaltulose candy had an equivalent <i>T</i> <sub>g</sub> to the commercial sugarless candies, and thus practically acceptable stability was expected. In the case of calcium maltobionate-sugar candies, there was a possibility that the hydrolysis of sugar reduced their <i>T</i> <sub>g</sub>. Vacuum-concentration will be useful to improve the <i>T</i> <sub>g</sub> of the candies.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2019-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5458/jag.jag.JAG-2019_0005","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39280645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characterization of a GH Family 20 Exo-β-<i>N</i>-acetylhexosaminidase with Antifungal Activity from <i>Streptomyces avermitilis</i>.","authors":"Naoki Shirasaka, Koichi Harazono, Ryota Nakahigashi, Keigo Mitsui, Jun Tanaka, Sayaka Tanazawa, Masaru Mitsutomi, Takayuki Ohnuma","doi":"10.5458/jag.jag.JAG-2019_0001","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2019_0001","url":null,"abstract":"<p><p>We characterized <i>Sa</i>HEX, which is a glycoside hydrolase (GH) family 20 exo-β-<i>N</i>-acetylhexosaminidase found in <i>Streptomyces avermitilis</i>. <i>Sa</i>HEX exolytically hydrolyzed chitin oligosaccharides from their non-reducing ends, and yielded <i>N</i>-acetylglucosamine (GlcNAc) as the end product. According to the initial rate of substrate hydrolysis, the rates of (GlcNAc)<sub>3</sub> and (GlcNAc)<sub>5</sub> hydrolysis were greater than the rates for the other oligosaccharides. The enzyme exhibited antifungal activity against <i>Aspergillus niger</i>, which was probably due to hydrolytic activity with regard to chitin in the hyphal tips. Therefore, <i>Sa</i>HEX has potential for use in GlcNAc production and food preservation.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2019-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5458/jag.jag.JAG-2019_0001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39280644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Construction of Cellulose Binding Domain Fusion FMN-Dependent NADH-Azoreductase and Glucose 1-Dehydrogenase for the Development of Flow Injection Analysis with Fusion Enzymes Immobilized on Cellulose.","authors":"Shigekazu Yano, Yukari Hori, Tatsuro Kijima, Hiroyuki Konno, Wasana Suyotha, Kazuyoshi Takagi, Mamoru Wakayama","doi":"10.5458/jag.jag.JAG-2018_0011","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2018_0011","url":null,"abstract":"<p><p>The cellulose binding domain (CBD) of cellulosome-integrating protein A from <i>Clostridium thermocellum</i> NBRC 103400 was genetically fused to FMN-dependent NADH-azoreductase (AZR) and glucose 1-dehydrogenase (GDH) from <i>Bacillus subtilis.</i> The fusion enzymes, AZR-CBD and CBD-GDH, were expressed in <i>Escherichia coli</i> Rosetta-gami B (DE3). The enzymes were purified from cell-free extracts, and the specific activity of AZR-CBD was 15.1 U/mg and that of CBD-GDH was 22.6 U/mg. AZR-CBD and CBD-GDH bound strongly to 0.5 % swollen cellulose at approximately 95 and 98 % of the initial protein amounts, respectively. After immobilization onto the swollen cellulose, AZR-CBD and CBD-GDH retained their catalytic activity. Both enzymes bound weakly to 0.5 % microcrystalline cellulose, but the addition of a high concentration of microcrystalline cellulose (10 %) improved the binding rate of both enzymes. A reactor for flow injection analysis was filled with microcrystalline cellulose-immobilized AZR-CBD and CBD-GDH. This flow injection analysis system was successfully applied for the determination of glucose, and a linear calibration curve was observed in the range of approximately 0.16-2.5 mM glucose, with a correlation coefficient, <i>r</i>, of 0.998.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2019-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5458/jag.jag.JAG-2018_0011","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39280642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Generation of <i>Trichoderma reesei</i> Mutant with Enhanced Xylanase Activity by Using Disparity Mutagenesis.","authors":"Taisuke Watanabe, Masashi Nasukawa, Yuki Yoshida, Takashi Kogo, Jun Ogihara, Takafumi Kasumi","doi":"10.5458/jag.jag.JAG-2018_0004","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2018_0004","url":null,"abstract":"<p><p>In the current study, we attempted to enhance the xylanase activity of <i>Trichoderma reesei</i> ATCC66589 by using disparity mutagenesis, wherein a plasmid harboring proofreading-impaired DNA polymerase δ was inserted. Following selection on xylan-rich media and successive plasmid curing, a mutant showing conidiospores strikingly different from those of the parent strain, with many small humped-surface spheres, was generated. Xylanase and β-xylosidase activities of the mutant XM1, cultivated in xylan medium, were 15.8- and 11.0-fold higher than those of the parent strain, respectively. Furthermore, xylanase activity was generated approximately 24 h in advance compared to that in the parent. In contrast, when cultivated in Avicel medium, its xylanase and β-xylosidase activities were 0.14- and 0.33-fold, respectively, compared to those in the parent. Among the xylan component sugars and related polyols, D-xylose and xylobiose exerted a distinct inductive effect on the xylanase activity in Avicel media, while xylitol and L-arabinose did not. Mutagenesis involved in xylose catabolism is suggestive of changes at the gene transcription level. Although the induction mechanism remains unclear in details, disparity mutagenesis may be useful for obtaining <i>T. reesei</i> mutants with high xylanase activity.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2019-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5458/jag.jag.JAG-2018_0004","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39280641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Novel α-Glucosidase of the Glycoside Hydrolase Family 31 from <i>Aspergillus sojae</i>.","authors":"Atsushi Kawano, Yuji Matsumoto, Nozomi Nikaido, Akihiro Tominaga, Takashi Tonozuka, Kazuhide Totani, Nozomu Yasutake","doi":"10.5458/jag.jag.JAG-2018_0012","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2018_0012","url":null,"abstract":"<p><p>We characterized an α-glucosidase belonging to the glycoside hydrolase family 31 from <i>Aspergillus sojae.</i> The α-glucosidase gene was cloned using the whole genome sequence of <i>A. sojae</i>, and the recombinant enzyme was expressed in <i>Aspergillus nidulans</i>. The enzyme was purified using affinity chromatography. The enzyme showed an optimum pH of 5.5 and was stable between pH 6.0 and 10.0. The optimum temperature was approximately 55 °C. The enzyme was stable up to 50 °C, but lost its activity at 70 °C. The enzyme acted on a broad range of maltooligosaccharides and isomaltooligosaccharides, soluble starch, and dextran, and released glucose from these substrates. When maltose was used as substrate, the enzyme catalyzed transglucosylation to produce oligosaccharides consisting of α-1,6-glucosidic linkages as the major products. The transglucosylation pattern with maltopentaose was also analyzed, indicating that the enzyme mainly produced oligosaccharides with molecular weights higher than that of maltopentaose and containing continuous α-1,6-glucosidic linkages. These results demonstrate that the enzyme is a novel α-glucosidase that acts on both maltooligosaccharides and isomaltooligosaccharides, and efficiently produces oligosaccharides containing continuous α-1,6-glucosidic linkages.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2019-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5458/jag.jag.JAG-2018_0012","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39280643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Physicochemical Properties of Starches from Lotus Rhizomes Harvested in Different Months.","authors":"Yuji Honda, Tetsuya Yamazaki, Naoya Katsumi, Naoko Fujita, Kenji Matsumoto, Masanori Okazaki, Shoji Miwa","doi":"10.5458/jag.jag.JAG-2018_0010","DOIUrl":"10.5458/jag.jag.JAG-2018_0010","url":null,"abstract":"<p><p>We investigated the physicochemical properties of starches extracted from 8 lotus (<i>Nelumbo nucifera</i> Gaertn.) rhizomes harvested in different months (September 2012 to May 2013). The physicochemical properties of the lotus starches depended on the harvest date. The peak viscosity (PV) in the Rapid Visco-Analyser analysis, and the viscosity at 65 °C (V<sub>65</sub>) in the rotational viscometer analysis were significantly lower in SEP starch (extracted from the September-harvested sample) than in the other lotus starches. The Spearman's rank correlation coefficients of potassium ion (K) content vs. V<sub>65</sub> and of K content vs. PV were 0.905 and 0.714, respectively, indicating that potassium ions are important for expressing the pasting properties of lotus starch. Principal component analysis suggested that the potassium, magnesium, calcium, and phosphorus contents are important for displaying both the pasting and gelatinization properties of the lotus starches. Meanwhile, the cluster analysis revealed that physicochemical properties of the SEP starch were different from those of the starches harvested in other months.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2019-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/23/c7/JAG-66-051.PMC8056931.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39280640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}