Structure and Properties of Starch in Rice Double Mutants Lacking Starch Synthase (SS) IIa and Starch Branching Enzyme (BE) IIb.

IF 1.2 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Journal of applied glycoscience Pub Date : 2021-04-30 eCollection Date: 2021-01-01 DOI:10.5458/jag.jag.JAG-2021_0002
Tamami Ida, Naoko Crofts, Satoko Miura, Ryo Matsushima, Naoko Fujita
{"title":"Structure and Properties of Starch in Rice Double Mutants Lacking Starch Synthase (SS) IIa and Starch Branching Enzyme (BE) IIb.","authors":"Tamami Ida,&nbsp;Naoko Crofts,&nbsp;Satoko Miura,&nbsp;Ryo Matsushima,&nbsp;Naoko Fujita","doi":"10.5458/jag.jag.JAG-2021_0002","DOIUrl":null,"url":null,"abstract":"<p><p>Starch biosynthetic enzymes form multi-protein complexes consisting of starch synthase (SS) I, SSIIa, and starch branching enzyme (BE) IIb, which synthesize amylopectin clusters. This study analyzed the starch properties in two double mutant rice lines lacking SSIIa and BEIIb, one of which expressed an inactive BEIIb protein. The <i>ss2a be2b</i> lines showed similar or greater seed weight than the <i>be2b</i> lines, and plant growth was not affected. The <i>ss2a</i> line showed increased short amylopectin chains resulting in a lower gelatinization temperature. Starch granule morphology and A-type crystallinity were similar between the <i>ss2a</i> line and the wild type, except for a mild chalky seed phenotype in the <i>ss2a</i> line. However, the starch phenotype of the <i>ss2a be2b</i> lines, which was similar to that of <i>be2b</i> but not <i>ss2a</i>, was characterized by increased long amylopectin chains, abnormal starch granules, and B-type crystallinity. The similarity in phenotype between the <i>ss2a be2b</i> and <i>be2b</i> lines may be attributed to the inability of the <i>be2b</i> mutants to generate short amylopectin branches, which serve as primers for SSIIa. Therefore, the presence or absence of SSIIa hardly affected the amylopectin structure under the <i>be2b</i> background. The amylose content was significantly higher in the <i>ss2a be2b</i> lines than in the <i>be2b</i> lines. Starch crystallinity was greater in <i>ss2a be2b</i> lines than in <i>be2b</i> lines, despite the fact that starch crystallinity is generally negatively correlated with amylose content. This suggests that the formation of a double helix between long amylopectin chains and amylose affects starch crystallinity in the <i>ss2a be2b</i> mutants.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2021-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/2f/6a/JAG-68-031.PMC8367641.pdf","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied glycoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5458/jag.jag.JAG-2021_0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 4

Abstract

Starch biosynthetic enzymes form multi-protein complexes consisting of starch synthase (SS) I, SSIIa, and starch branching enzyme (BE) IIb, which synthesize amylopectin clusters. This study analyzed the starch properties in two double mutant rice lines lacking SSIIa and BEIIb, one of which expressed an inactive BEIIb protein. The ss2a be2b lines showed similar or greater seed weight than the be2b lines, and plant growth was not affected. The ss2a line showed increased short amylopectin chains resulting in a lower gelatinization temperature. Starch granule morphology and A-type crystallinity were similar between the ss2a line and the wild type, except for a mild chalky seed phenotype in the ss2a line. However, the starch phenotype of the ss2a be2b lines, which was similar to that of be2b but not ss2a, was characterized by increased long amylopectin chains, abnormal starch granules, and B-type crystallinity. The similarity in phenotype between the ss2a be2b and be2b lines may be attributed to the inability of the be2b mutants to generate short amylopectin branches, which serve as primers for SSIIa. Therefore, the presence or absence of SSIIa hardly affected the amylopectin structure under the be2b background. The amylose content was significantly higher in the ss2a be2b lines than in the be2b lines. Starch crystallinity was greater in ss2a be2b lines than in be2b lines, despite the fact that starch crystallinity is generally negatively correlated with amylose content. This suggests that the formation of a double helix between long amylopectin chains and amylose affects starch crystallinity in the ss2a be2b mutants.

Abstract Image

Abstract Image

Abstract Image

缺乏淀粉合酶(SS) IIa和淀粉分支酶(BE) IIb的水稻双突变体的淀粉结构和特性
淀粉生物合成酶形成由淀粉合酶(SS) I、SSIIa和淀粉分支酶(BE) IIb组成的多蛋白复合物,合成支链淀粉簇。本研究分析了两个缺乏siia和BEIIb的双突变水稻品系的淀粉特性,其中一个品系表达了一个失活的BEIIb蛋白。ss2a - be2b系的种子重与be2b系相近或更大,且不影响植株生长。ss2a系的短支链增加,导致糊化温度降低。ss2a系的淀粉粒形态和a型结晶度与野生型相似,但ss2a系的种子表型为轻度白垩。然而,ss2a - be2b系的淀粉表型与be2b相似,但与ss2a不同,其特点是支链淀粉长链增加,淀粉颗粒异常,b型结晶度。ss2a、be2b和be2b系在表型上的相似性可能归因于be2b突变体不能产生短支链淀粉分支,而支链淀粉分支是SSIIa的引物。因此,在be2b背景下,siia的存在与否对支链淀粉结构影响不大。ss2a - be2b系直链淀粉含量显著高于be2b系。尽管淀粉结晶度通常与直链淀粉含量呈负相关,但ss2a - be2b系的淀粉结晶度高于be2b系。这表明长链支链和直链淀粉之间形成的双螺旋结构影响了ss2a be2b突变体的淀粉结晶度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of applied glycoscience
Journal of applied glycoscience BIOCHEMISTRY & MOLECULAR BIOLOGY-
自引率
9.10%
发文量
13
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信