{"title":"酿酒酵母的Emi2蛋白是一种在葡萄糖限制下表达的己糖激酶。","authors":"Midori Umekawa, Kaito Hamada, Naoto Isono, Shuichi Karita","doi":"10.5458/jag.jag.JAG-2020_0007","DOIUrl":null,"url":null,"abstract":"<p><p>Hexokinases catalyze glucose phosphorylation at the first step in glycolysis in eukaryotes. In the budding yeast <i>Saccharomyces cerevisiae</i> , three enzymes for glucose phosphorylation have long been known: Hxk1, Hxk2, and Glk1. In this study, we focus on Emi2, a previously uncharacterized hexokinase-like protein of <i>S. cerevisiae</i> . Our data show that the recombinant Emi2 protein (rEmi2), expressed in <i>Escherichia coli</i> , possesses glucose-phosphorylating activity in the presence of ATP and Mg <sup>2+</sup> . It was also found that rEmi2 phosphorylates not only glucose but also fructose, mannose and glucosamine <i>in vitro</i> . In addition, we examined changes in the level of endogenous Emi2 protein in <i>S. cerevisiae</i> in the presence or absence of glucose and a non-fermentable carbon source. We found that the expression of Emi2 protein is tightly suppressed during proliferation in high glucose, while it is strongly upregulated in response to glucose limitation and the presence of a non-fermentable carbon source. Our data suggest that the expression of the endogenous Emi2 protein in <i>S. cerevisiae</i> is regulated under the control of Hxk2 in response to glucose availability in the environment.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"67 4","pages":"103-109"},"PeriodicalIF":1.2000,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0c/2a/JAG-67-103.PMC8119236.pdf","citationCount":"5","resultStr":"{\"title\":\"The Emi2 Protein of <i>Saccharomyces cerevisiae</i> is a Hexokinase Expressed under Glucose Limitation.\",\"authors\":\"Midori Umekawa, Kaito Hamada, Naoto Isono, Shuichi Karita\",\"doi\":\"10.5458/jag.jag.JAG-2020_0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hexokinases catalyze glucose phosphorylation at the first step in glycolysis in eukaryotes. In the budding yeast <i>Saccharomyces cerevisiae</i> , three enzymes for glucose phosphorylation have long been known: Hxk1, Hxk2, and Glk1. In this study, we focus on Emi2, a previously uncharacterized hexokinase-like protein of <i>S. cerevisiae</i> . Our data show that the recombinant Emi2 protein (rEmi2), expressed in <i>Escherichia coli</i> , possesses glucose-phosphorylating activity in the presence of ATP and Mg <sup>2+</sup> . It was also found that rEmi2 phosphorylates not only glucose but also fructose, mannose and glucosamine <i>in vitro</i> . In addition, we examined changes in the level of endogenous Emi2 protein in <i>S. cerevisiae</i> in the presence or absence of glucose and a non-fermentable carbon source. We found that the expression of Emi2 protein is tightly suppressed during proliferation in high glucose, while it is strongly upregulated in response to glucose limitation and the presence of a non-fermentable carbon source. Our data suggest that the expression of the endogenous Emi2 protein in <i>S. cerevisiae</i> is regulated under the control of Hxk2 in response to glucose availability in the environment.</p>\",\"PeriodicalId\":14999,\"journal\":{\"name\":\"Journal of applied glycoscience\",\"volume\":\"67 4\",\"pages\":\"103-109\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0c/2a/JAG-67-103.PMC8119236.pdf\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of applied glycoscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5458/jag.jag.JAG-2020_0007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied glycoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5458/jag.jag.JAG-2020_0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The Emi2 Protein of Saccharomyces cerevisiae is a Hexokinase Expressed under Glucose Limitation.
Hexokinases catalyze glucose phosphorylation at the first step in glycolysis in eukaryotes. In the budding yeast Saccharomyces cerevisiae , three enzymes for glucose phosphorylation have long been known: Hxk1, Hxk2, and Glk1. In this study, we focus on Emi2, a previously uncharacterized hexokinase-like protein of S. cerevisiae . Our data show that the recombinant Emi2 protein (rEmi2), expressed in Escherichia coli , possesses glucose-phosphorylating activity in the presence of ATP and Mg 2+ . It was also found that rEmi2 phosphorylates not only glucose but also fructose, mannose and glucosamine in vitro . In addition, we examined changes in the level of endogenous Emi2 protein in S. cerevisiae in the presence or absence of glucose and a non-fermentable carbon source. We found that the expression of Emi2 protein is tightly suppressed during proliferation in high glucose, while it is strongly upregulated in response to glucose limitation and the presence of a non-fermentable carbon source. Our data suggest that the expression of the endogenous Emi2 protein in S. cerevisiae is regulated under the control of Hxk2 in response to glucose availability in the environment.