{"title":"Enzymatic Synthesis and Structural Confirmation of Novel Oligosaccharide, D-Fructofuranose-linked Chitin Oligosaccharide.","authors":"Hiroki Hosaka, Sayaka Shirai, Sora Fujita, Mitsuru Tashiro, Takako Hirano, Wataru Hakamata, Toshiyuki Nishio","doi":"10.5458/jag.jag.JAG-2020_0009","DOIUrl":null,"url":null,"abstract":"<p><p>Utilizing transglycosylation reaction catalyzed by β- <i>N</i> -acetylhexosaminidase of <i>Stenotrophomonas maltophilia</i> , β-D-fructofuranosyl-(2↔1)-α- <i>N</i> , <i>N</i> ´diacetylchitobioside (GlcNAc <sub>2</sub> -Fru) was synthesized from <i>N</i> -acetylsucrosamine and <i>N</i> , <i>N</i> ´-diacetylchitobiose (GlcNAc <sub>2</sub> ), and β-D-fructofuranosyl-(2↔1)-α- <i>N</i> , <i>N</i> ´, <i>N</i> ´´-triacetylchitotrioside (GlcNAc <sub>3</sub> -Fru) was synthesized from GlcNAc <sub>2</sub> -Fru and GlcNAc <sub>2</sub> . Through purification by charcoal column chromatography, pure GlcNAc <sub>2</sub> -Fru and GlcNAc <sub>3</sub> -Fru were obtained in molar yields of 33.0 % and 11.7 % from GlcNAc <sub>2</sub> , respectively. The structures of these oligosaccharides were confirmed by comparing instrumental analysis data of fragments obtained by enzymatic hydrolysis and acid hydrolysis of them with known data of these fragments.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/cc/af/JAG-67-129.PMC8116863.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied glycoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5458/jag.jag.JAG-2020_0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Utilizing transglycosylation reaction catalyzed by β- N -acetylhexosaminidase of Stenotrophomonas maltophilia , β-D-fructofuranosyl-(2↔1)-α- N , N ´diacetylchitobioside (GlcNAc 2 -Fru) was synthesized from N -acetylsucrosamine and N , N ´-diacetylchitobiose (GlcNAc 2 ), and β-D-fructofuranosyl-(2↔1)-α- N , N ´, N ´´-triacetylchitotrioside (GlcNAc 3 -Fru) was synthesized from GlcNAc 2 -Fru and GlcNAc 2 . Through purification by charcoal column chromatography, pure GlcNAc 2 -Fru and GlcNAc 3 -Fru were obtained in molar yields of 33.0 % and 11.7 % from GlcNAc 2 , respectively. The structures of these oligosaccharides were confirmed by comparing instrumental analysis data of fragments obtained by enzymatic hydrolysis and acid hydrolysis of them with known data of these fragments.
利用嗜麦芽寡养单胞菌β- N -乙酰己糖苷酶催化的转糖基化反应,从N -乙酰蔗糖胺和N, N ' -二乙酰壳聚糖(GlcNAc 2)合成β- d -果糖呋喃基-(2↔1)-α- N, N ' ' -二乙酰壳聚糖(GlcNAc 2),从GlcNAc 2 -fru和GlcNAc 2合成β- d -果糖呋喃基-(2↔1)-α- N, N ', N ' ' -三乙酰壳聚糖(GlcNAc 3 -fru)。经炭柱层析纯化,得到GlcNAc 2 -Fru和GlcNAc 3 -Fru的摩尔产率分别为33.0%和11.7%。通过将酶解和酸解获得的片段的仪器分析数据与已知片段的数据进行比较,确定了这些寡糖的结构。