Sasa Miao, Tianming Mu, Ru Li, Yan Li, Wenyan Zhao, Jiankui Li, Xinyang Dong, Xiaoting Zou
{"title":"Coated sodium butyrate ameliorates high-energy and low-protein diet induced hepatic dysfunction via modulating mitochondrial dynamics, autophagy and apoptosis in laying hens","authors":"Sasa Miao, Tianming Mu, Ru Li, Yan Li, Wenyan Zhao, Jiankui Li, Xinyang Dong, Xiaoting Zou","doi":"10.1186/s40104-023-00980-8","DOIUrl":"https://doi.org/10.1186/s40104-023-00980-8","url":null,"abstract":"Fatty liver hemorrhagic syndrome (FLHS), a fatty liver disease in laying hens, poses a grave threat to the layer industry, stemming from its ability to trigger an alarming plummet in egg production and usher in acute mortality among laying hens. Increasing evidence suggests that the onset and progression of fatty liver was closely related to mitochondria dysfunction. Sodium butyrate was demonstrated to modulate hepatic lipid metabolism, alleviate oxidative stress and improve mitochondrial dysfunction in vitro and mice models. Nevertheless, there is limited existing research on coated sodium butyrate (CSB) to prevent FLHS in laying hens, and whether and how CSB exerts the anti-FLHS effect still needs to be explored. In this experiment, the FLHS model was induced by administering a high-energy low-protein (HELP) diet in laying hens. The objective was to investigate the effects of CSB on alleviating FLHS with a focus on the role of CSB in modulating mitochondrial function. A total of 288 healthy 28-week-old Huafeng laying hens were arbitrarily allocated into 4 groups with 6 replicates each, namely, the CON group (normal diet), HELP group (HELP diet), CH500 group (500 mg/kg CSB added to HELP diet) and CH750 group (750 mg/kg CSB added to HELP diet). The duration of the trial encompassed a period of 10 weeks. The result revealed that CSB ameliorated the HELP-induced FLHS by improving hepatic steatosis and pathological damage, reducing the gene levels of fatty acid synthesis, and promoting the mRNA levels of key enzymes of fatty acid catabolism. CSB reduced oxidative stress induced by the HELP diet, upregulated the activity of GSH-Px and SOD, and decreased the content of MDA and ROS. CSB also mitigated the HELP diet-induced inflammatory response by blocking TNF-α, IL-1β, and F4/80. In addition, dietary CSB supplementation attenuated HELP-induced activation of the mitochondrial unfolded protein response (UPRmt), mitochondrial damage, and decline of ATPase activity. HELP diet decreased the autophagosome formation, and downregulated LC3B but upregulated p62 protein expression, which CSB administration reversed. CSB reduced HELP-induced apoptosis, as indicated by decreases in the Bax/Bcl-2, Caspase-9, Caspase-3, and Cyt C expression levels. Dietary CSB could ameliorate HELP diet-induced hepatic dysfunction via modulating mitochondrial dynamics, autophagy, and apoptosis in laying hens. Consequently, CSB, as a feed additive, exhibited the capacity to prevent FLHS by modulating autophagy and lipid metabolism. ","PeriodicalId":14928,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"74 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139660038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Insights into the mechanism of L-malic acid on drip loss of chicken meat under commercial conditions","authors":"Haijun Sun, Xue Yan, Lu Wang, Ruimin Zhu, Meixia Chen, Jingdong Yin, Xin Zhang","doi":"10.1186/s40104-023-00987-1","DOIUrl":"https://doi.org/10.1186/s40104-023-00987-1","url":null,"abstract":"A deterioration in the meat quality of broilers has attracted much more attention in recent years. L-malic acid (MA) is evidenced to decrease meat drip loss in broilers, but the underlying molecular mechanisms are still unclear. It’s also not sure whether the outputs obtained under experimental conditions can be obtained in a commercial condition. Here, we investigated the effects and mechanisms of dietary MA supplementation on chicken meat drip loss at large-scale rearing. Results showed that the growth performance and drip loss were improved by MA supplementation. Meat metabolome revealed that L-2-aminoadipic acid, β-aminoisobutyric acid, eicosapentaenoic acid, and nicotinamide, as well as amino acid metabolism pathways connected to the improvements of meat quality by MA addition. The transcriptome analysis further indicated that the effect of MA on drip loss was also related to the proper immune response, evidenced by the enhanced B cell receptor signaling pathway, NF-κB signaling pathway, TNF signaling pathway, and IL-17 signaling pathway. We provided evidence that MA decreased chicken meat drip loss under commercial conditions. Metabolome and transcriptome revealed a comprehensive understanding of the underlying mechanisms. Together, MA could be used as a promising dietary supplement for enhancing the water-holding capacity of chicken meat.","PeriodicalId":14928,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"46 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139574127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Raphaël Defaix, Jep Lokesh, Laura Frohn, Mickael Le Bechec, Thierry Pigot, Vincent Véron, Anne Surget, Sandra Biasutti, Frédéric Terrier, Sandrine Skiba-Cassy, Jérôme Roy, Stéphane Panserat, Karine Ricaud
{"title":"Exploring the effects of dietary inulin in rainbow trout fed a high-starch, 100% plant-based diet","authors":"Raphaël Defaix, Jep Lokesh, Laura Frohn, Mickael Le Bechec, Thierry Pigot, Vincent Véron, Anne Surget, Sandra Biasutti, Frédéric Terrier, Sandrine Skiba-Cassy, Jérôme Roy, Stéphane Panserat, Karine Ricaud","doi":"10.1186/s40104-023-00951-z","DOIUrl":"https://doi.org/10.1186/s40104-023-00951-z","url":null,"abstract":"High dietary carbohydrates can spare protein in rainbow trout (Oncorhynchus mykiss) but may affect growth and health. Inulin, a prebiotic, could have nutritional and metabolic effects, along with anti-inflammatory properties in teleosts, improving growth and welfare. We tested this hypothesis in rainbow trout by feeding them a 100% plant-based diet, which is a viable alternative to fishmeal and fish oil in aquaculture feeds. In a two-factor design, we examined the impact of inulin (2%) as well as the variation in the carbohydrates (CHO)/plant protein ratio on rainbow trout. We assessed the influence of these factors on zootechnical parameters, plasma metabolites, gut microbiota, production of short-chain fatty acids and lactic acid, as well as the expression of free-fatty acid receptor genes in the mid-intestine, intermediary liver metabolism, and immune markers in a 12-week feeding trial. The use of 2% inulin did not significantly change the fish intestinal microbiota, but interestingly, the high CHO/protein ratio group showed a change in intestinal microbiota and in particular the beta diversity, with 21 bacterial genera affected, including Ralstonia, Bacillus, and 11 lactic-acid producing bacteria. There were higher levels of butyric, and valeric acid in groups fed with high CHO/protein diet but not with inulin. The high CHO/protein group showed a decrease in the expression of pro-inflammatory cytokines (il1b, il8, and tnfa) in liver and a lower expression of the genes coding for tight-junction proteins in mid-intestine (tjp1a and tjp3). However, the 2% inulin did not modify the expression of plasma immune markers. Finally, inulin induced a negative effect on rainbow trout growth performance irrespective of the dietary carbohydrates. With a 100% plant-based diet, inclusion of high levels of carbohydrates could be a promising way for fish nutrition in aquaculture through a protein sparing effect whereas the supplementation of 2% inulin does not appear to improve the use of CHO when combined with a 100% plant-based diet.","PeriodicalId":14928,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"21 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139510752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of antioxidant-rich Lactiplantibacillus plantarum inoculated alfalfa silage on rumen fermentation, antioxidant and immunity status, and mammary gland gene expression in dairy goats","authors":"Yixin Zhang, Samaila Usman, Qiang Li, Fuhou Li, Xia Zhang, Luiz Gustavo Nussio, Xusheng Guo","doi":"10.1186/s40104-023-00977-3","DOIUrl":"https://doi.org/10.1186/s40104-023-00977-3","url":null,"abstract":"Milk synthesis in lactating animals demands high energy metabolism, which results in an increased production of reactive oxygen metabolites (ROM) causing an imbalance between oxidants and antioxidants thereby inducing oxidative stress (OS) on the animals. To mitigate OS and postpartum disorders in dairy goats and gain insight into the impact of dietary choices on redox status during lactation, a feeding trial was conducted using alfalfa silage inoculated with a high-antioxidant strain of Lactiplantibacillus plantarum. Twenty-four Guanzhong dairy goats (38.1 ± 1.20 kg) were randomly assigned to two dietary treatments: one containing silage inoculated with L. plantarum MTD/1 (RSMTD-1), and the other containing silage inoculated with high antioxidant activity L. plantarum 24-7 (ES24-7). ES24-7-inoculated silage exhibited better fermentation quality and antioxidant activity compared to RSMTD-1. The ES24-7 diet elevated the total antioxidant capacity (T-AOC), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) activities in milk, serum, and feces of lactating goats (with the exception of T-AOC in milk). Additionally, the diet containing ES24-7 inoculated silage enhanced casein yield, milk free fatty acid (FFA) content, and vitamin A level in the goats’ milk. Furthermore, an increase of immunoglobulin (Ig)A, IgG, IgM, interleukin (IL)-4, and IL-10 concentrations were observed, coupled with a reduction in IL-1β, IL-2, IL-6, interferon (IFN)-γ, and tumor necrosis factor (TNF)-α concentrations in the serum of lactating goats fed ES24-7. Higher concentrations of total volatile fatty acid (VFA), acetate, and propionate were observed in the rumen fluid of dairy goats fed ES24-7 inoculated silage. Moreover, the diet containing ES24-7 inoculated silage significantly upregulated the expression of nuclear factor erythroid 2 like 2 (NFE2L2), beta-carotene oxygenase 1 (BCO1), SOD1, SOD2, SOD3, GPX2, CAT, glutathione-disulfide reductase (GSR), and heme oxygenase 1 (HMOX1) genes in the mammary gland, while decreased the levels of NADPH oxidase 4 (NOX4), TNF, and interferon gamma (IFNG). These findings indicated that feeding L. plantarum 24-7 inoculated alfalfa silage not only improved rumen fermentation and milk quality in lactating dairy goats but also boosted their immunity and antioxidant status by modulating the expression of several genes related to antioxidant and inflammation in the mammary gland.","PeriodicalId":14928,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"51 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139510876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qingyan Yin, Junjian Yu, Jiaxiao Li, Tianci Zhang, Tianyu Wang, Yufei Zhu, Jun Zhang, Junhu Yao
{"title":"Enhancing milk quality and modulating rectal microbiota of dairy goats in starch-rich diet: the role of bile acid supplementation","authors":"Qingyan Yin, Junjian Yu, Jiaxiao Li, Tianci Zhang, Tianyu Wang, Yufei Zhu, Jun Zhang, Junhu Yao","doi":"10.1186/s40104-023-00957-7","DOIUrl":"https://doi.org/10.1186/s40104-023-00957-7","url":null,"abstract":"Diets rich in starch have been shown to increase a risk of reducing milk fat content in dairy goats. While bile acids (BAs) have been used as a lipid emulsifier in monogastric and aquatic animals, their effect on ruminants is not well understood. This study aimed to investigate the impact of BAs supplementation on various aspects of dairy goat physiology, including milk composition, rumen fermentation, gut microbiota, and BA metabolism. We randomly divided eighteen healthy primiparity lactating dairy goats (days in milk = 100 ± 6 d) into two groups and supplemented them with 0 or 4 g/d of BAs undergoing 5 weeks of feeding on a starch-rich diet. The results showed that BAs supplementation positively influenced milk yield and improved the quality of fatty acids in goat milk. BAs supplementation led to a reduction in saturated fatty acids (C16:0) and an increase in monounsaturated fatty acids (cis-9 C18:1), resulting in a healthier milk fatty acid profile. We observed a significant increase in plasma total bile acid concentration while the proportion of rumen short-chain fatty acids was not affected. Furthermore, BAs supplementation induced significant changes in the composition of the gut microbiota, favoring the enrichment of specific bacterial groups and altering the balance of microbial populations. Correlation analysis revealed associations between specific bacterial groups (Bacillus and Christensenellaceae R-7 group) and BA types, suggesting a role for the gut microbiota in BA metabolism. Functional prediction analysis revealed notable changes in pathways associated with lipid metabolism, suggesting that BAs supplementation has the potential to modulate lipid-related processes. These findings highlight the potential benefits of BAs supplementation in enhancing milk production, improving milk quality, and influencing metabolic pathways in dairy goats. Further research is warranted to elucidate the underlying mechanisms and explore the broader implications of these findings.","PeriodicalId":14928,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"86 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139510865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pre-hatch thermal manipulation of embryos and post-hatch baicalein supplementation mitigated heat stress in broiler chickens","authors":"Sadid Al Amaz, Ajay Chaudhary, Prem Lal Mahato, Rajesh Jha, Birendra Mishra","doi":"10.1186/s40104-023-00966-6","DOIUrl":"https://doi.org/10.1186/s40104-023-00966-6","url":null,"abstract":"High environmental temperatures induce heat stress in broiler chickens, affecting their health and production performance. Several dietary, managerial, and genetics strategies have been tested with some success in mitigating heat stress (HS) in broilers. Developing novel HS mitigation strategies for sustaining broiler production is critically needed. This study investigated the effects of pre-hatch thermal manipulation (TM) and post-hatch baicalein supplementation on growth performance and health parameters in heat-stressed broilers. Six hundred fertile Cobb 500 eggs were incubated for 21 d. After candling on embryonic day (ED) 10, 238 eggs were thermally manipulated at 38.5 °C with 55% relative humidity (RH) from ED 12 to 18, then transferred to the hatcher (ED 19 to 21, standard temperature) and 236 eggs were incubated at a controlled temperature (37.5 °C) till hatch. After hatch, 180-day-old chicks from both groups were raised in 36 pens (n = 10 birds/pen, 6 replicates per treatment). The treatments were: 1) Control, 2) TM, 3) control heat stress (CHS), 4) thermal manipulation heat stress (TMHS), 5) control heat stress supplement (CHSS), and 6) thermal manipulation heat stress supplement (TMHSS). All birds were raised under the standard environment for 21 d, followed by chronic heat stress from d 22 to 35 (32–33 °C for 8 h) in the CHS, TMHS, CHSS, and TMHSS groups. A thermoneutral (22–24 °C) environment was maintained in the Control and TM groups. RH was constant (50% ± 5%) throughout the trial. All the data were analyzed using one-way ANOVA in R and GraphPad software at P < 0.05 and are presented as mean ± SEM. Heat stress significantly decreased (P < 0.05) the final body weight and ADG in CHS and TMHS groups compared to the other groups. Embryonic TM significantly increased (P < 0.05) the expression of heat shock protein-related genes (HSP70, HSP90, and HSPH1) and antioxidant-related genes (GPX1 and TXN). TMHS birds showed a significant increment (P < 0.05) in total cecal volatile fatty acid (VFA) concentration compared to the CHS birds. The cecal microbial analysis showed significant enrichment (P < 0.05) in alpha and beta diversity and Coprococcus in the TMHSS group. Pre-hatch TM and post-hatch baicalein supplementation in heat-stressed birds mitigate the detrimental effects of heat stress on chickens' growth performance, upregulate favorable gene expression, increase VFA production, and promote gut health by increasing beneficial microbial communities.","PeriodicalId":14928,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"51 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139510857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yaqi Chang, Ke Wang, Guangmang Liu, Hua Zhao, Xiaoling Chen, Jingyi Cai, Gang Jia
{"title":"Zinc glycine chelate ameliorates DSS-induced intestinal barrier dysfunction via attenuating TLR4/NF-κB pathway in meat ducks","authors":"Yaqi Chang, Ke Wang, Guangmang Liu, Hua Zhao, Xiaoling Chen, Jingyi Cai, Gang Jia","doi":"10.1186/s40104-023-00962-w","DOIUrl":"https://doi.org/10.1186/s40104-023-00962-w","url":null,"abstract":"Zinc glycine chelate (Zn-Gly) has anti-inflammation and growth-promoting properties; however, the mechanism of Zn-Gly contribution to gut barrier function in Cherry Valley ducks during intestinal inflammation is unknown. Three-hundred 1-day-old ducks were divided into 5 groups (6 replicates and 10 ducks per replicate) in a completely randomized design: the control and dextran sulfate sodium (DSS) groups were fed a corn-soybean meal basal diet, and experimental groups received supplements of 70, 120 or 170 mg/kg Zn in form of Zn-Gly. The DSS and treatment groups were given 2 mL of 0.45 g/mL DSS daily during d 15–21, and the control group received normal saline. The experiment lasted 21 d. Compared with DSS group, 70, 120 and 170 mg/kg Zn significantly increased body weight (BW), villus height and the ratio of villus to crypt, and significantly decreased the crypt depth of jejunum at 21 d. The number of goblet cells in jejunal villi in the Zn-Gly group was significantly increased by periodic acid-Schiff staining. Compared with control, the content of intestinal permeability marker D-lactic acid (D-LA) and fluxes of fluorescein isothiocyanate (FITC-D) in plasma of DSS group significantly increased, and 170 mg/kg Zn supplementation significantly decreased the D-LA content and FITC-D fluxes. Compared with control, contents of plasma, jejunum endotoxin and jejunum pro-inflammatory factors IL-1β, IL-6 and TNF-α were significantly increased in DSS group, and were significantly decreased by 170 mg/kg Zn supplementation. Dietary Zn significantly increased the contents of anti-inflammatory factors IL-10, IL-22 and sIgA and IgG in jejunum. Real-time PCR and Western blot results showed that 170 mg/kg Zn supplementation significantly increased mRNA expression levels of CLDN-1 and expression of OCLN protein in jejunum, and decreased gene and protein expression of CLDN-2 compared with DSS group. The 120 mg/kg Zn significantly promoted the expressions of IL-22 and IgA. Dietary Zn-Gly supplementation significantly decreased pro-inflammatory genes IL-8 and TNF-α expression levels and TNF-α protein expression in jejunum. Additionally, Zn significantly reduced the gene and protein expression of TLR4, MYD88 and NF-κB p65. Zn-Gly improved duck BW and alleviated intestinal injury by regulating intestinal morphology, barrier function and gut inflammation-related signal pathways TLR4/MYD88/NF-κB p65.","PeriodicalId":14928,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"96 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139494761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of dietary Clostridium butyricum and rumen protected fat on meat quality, oxidative stability, and chemical composition of finishing goats","authors":"Meimei Zhang, Zhiyue Zhang, Xinlong Zhang, Changming Lu, Wenzhu Yang, Xiaolai Xie, Hangshu Xin, Xiaotan Lu, Mingbo Ni, Xinyue Yang, Xiaoyang Lv, Peixin Jiao","doi":"10.1186/s40104-023-00972-8","DOIUrl":"https://doi.org/10.1186/s40104-023-00972-8","url":null,"abstract":"Clostridium butyricum (CB) is a probiotic that can regulate intestinal microbial composition and improve meat quality. Rumen protected fat (RPF) has been shown to increase the dietary energy density and provide essential fatty acids. However, it is still unknown whether dietary supplementation with CB and RPF exerts beneficial effects on growth performance and nutritional value of goat meat. This study aimed to investigate the effects of dietary CB and RPF supplementation on growth performance, meat quality, oxidative stability, and meat nutritional value of finishing goats. Thirty-two goats (initial body weight, 20.5 ± 0.82 kg) were used in a completely randomized block design with a 2 RPF supplementation (0 vs. 30 g/d) × 2 CB supplementation (0 vs. 1.0 g/d) factorial treatment arrangement. The experiment included a 14-d adaptation and 70-d data and sample collection period. The goats were fed a diet consisted of 400 g/kg peanut seedling and 600 g/kg corn-based concentrate (dry matter basis). Interaction between CB and RPF was rarely observed on the variables measured, except that shear force was reduced (P < 0.05) by adding CB or RPF alone or their combination; the increased intramuscular fat (IMF) content with adding RPF was more pronounced (P < 0.05) with CB than without CB addition. The pH24h (P = 0.009), a* values (P = 0.007), total antioxidant capacity (P = 0.050), glutathione peroxidase activities (P = 0.006), concentrations of 18:3 (P < 0.001), 20:5 (P = 0.003) and total polyunsaturated fatty acids (P = 0.048) were increased, whereas the L* values (P < 0.001), shear force (P = 0.050) and malondialdehyde content (P = 0.044) were decreased by adding CB. Furthermore, CB supplementation increased essential amino acid (P = 0.027), flavor amino acid (P = 0.010) and total amino acid contents (P = 0.024) as well as upregulated the expression of lipoprotein lipase (P = 0.034) and peroxisome proliferator-activated receptor γ (PPARγ) (P = 0.012), and downregulated the expression of stearoyl-CoA desaturase (SCD) (P = 0.034). The RPF supplementation increased dry matter intake (P = 0.005), averaged daily gain (trend, P = 0.058), hot carcass weight (P = 0.046), backfat thickness (P = 0.006), concentrations of 16:0 (P < 0.001) and c9-18:1 (P = 0.002), and decreased the shear force (P < 0.001), isoleucine (P = 0.049) and lysine content (P = 0.003) of meat. In addition, the expressions of acetyl-CoA carboxylase (P = 0.003), fatty acid synthase (P = 0.038), SCD (P < 0.001) and PPARγ (P = 0.022) were upregulated due to RPF supplementation, resulting in higher (P < 0.001) content of IMF. CB and RPF could be fed to goats for improving the growth performance, carcass traits and meat quality, and promote fat deposition by upregulating the expression of lipogenic genes of Longissimus thoracis muscle.","PeriodicalId":14928,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"3 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139468523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Genome-wide investigation to assess copy number variants in the Italian local chicken population","authors":"Filippo Cendron, Martino Cassandro, Mauro Penasa","doi":"10.1186/s40104-023-00965-7","DOIUrl":"https://doi.org/10.1186/s40104-023-00965-7","url":null,"abstract":"Copy number variants (CNV) hold significant functional and evolutionary importance. Numerous ongoing CNV studies aim to elucidate the etiology of human diseases and gain insights into the population structure of livestock. High-density chips have enabled the detection of CNV with increased resolution, leading to the identification of even small CNV. This study aimed to identify CNV in local Italian chicken breeds and investigate their distribution across the genome. Copy number variants were mainly distributed across the first six chromosomes and primarily associated with loss type CNV. The majority of CNV in the investigated breeds were of types 0 and 1, and the minimum length of CNV was significantly larger than that reported in previous studies. Interestingly, a high proportion of the length of chromosome 16 was covered by copy number variation regions (CNVR), with the major histocompatibility complex being the likely cause. Among the genes identified within CNVR, only those present in at least five animals across breeds (n = 95) were discussed to reduce the focus on redundant CNV. Some of these genes have been associated to functional traits in chickens. Notably, several CNVR on different chromosomes harbor genes related to muscle development, tissue-specific biological processes, heat stress resistance, and immune response. Quantitative trait loci (QTL) were also analyzed to investigate potential overlapping with the identified CNVR: 54 out of the 95 gene-containing regions overlapped with 428 QTL associated to body weight and size, carcass characteristics, egg production, egg components, fat deposition, and feed intake. The genomic phenomena reported in this study that can cause changes in the distribution of CNV within the genome over time and the comparison of these differences in CNVR of the local chicken breeds could help in preserving these genetic resources.","PeriodicalId":14928,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"37 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139081835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kwangwook Kim, Cynthia Jinno, Xunde Li, David Bravo, Eric Cox, Peng Ji, Yanhong Liu
{"title":"Impact of an oligosaccharide-based polymer on the metabolic profiles and microbial ecology of weanling pigs experimentally infected with a pathogenic E. coli","authors":"Kwangwook Kim, Cynthia Jinno, Xunde Li, David Bravo, Eric Cox, Peng Ji, Yanhong Liu","doi":"10.1186/s40104-023-00956-8","DOIUrl":"https://doi.org/10.1186/s40104-023-00956-8","url":null,"abstract":"Our previous study has reported that supplementation of oligosaccharide-based polymer enhances gut health and disease resistance of pigs infected with enterotoxigenic E. coli (ETEC) F18 in a manner similar to carbadox. The objective of this study was to investigate the impacts of oligosaccharide-based polymer or antibiotic on the host metabolic profiles and colon microbiota of weaned pigs experimentally infected with ETEC F18. Multivariate analysis highlighted the differences in the metabolic profiles of serum and colon digesta which were predominantly found between pigs supplemented with oligosaccharide-based polymer and antibiotic. The relative abundance of metabolic markers of immune responses and nutrient metabolisms, such as amino acids and carbohydrates, were significantly differentiated between the oligosaccharide-based polymer and antibiotic groups (q < 0.2 and fold change > 2.0). In addition, pigs in antibiotic had a reduced (P < 0.05) relative abundance of Lachnospiraceae and Lactobacillaceae, whereas had greater (P < 0.05) Clostridiaceae and Streptococcaceae in the colon digesta on d 11 post-inoculation (PI) compared with d 5 PI. The impact of oligosaccharide-based polymer on the metabolic and microbial profiles of pigs is not fully understood, and further exploration is needed. However, current research suggest that various mechanisms are involved in the enhanced disease resistance and performance in ETEC-challenged pigs by supplementing this polymer.","PeriodicalId":14928,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"35 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139076741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}